DATA-EFFICIENT AUTOMATIC MODEL SELECTION IN **UNSUPERVISED ANOMALY DETECTION**

Gautham Krishna Gudur, Raaghul R, Adithya K, Shrihari Vasudevan

Global Al Accelerator (GAIA), Ericsson R&D

ANOMALY DETECTION

- Process of identifying unexpected/unforeseen events in an application.
- Types of anomalies 1) Point, 2) Contextual, 3) Collective.

Unsupervised Anomaly Detection

- Require domain-experts to identify anomalies.

Evolves over time – changes in data distributions, geographical constraints, business contexts.

Most real-world AD applications are unsupervised, due to **bottleneck of obtaining labelled data**.

MOTIVATION

- Approach recommendation for unsupervised AD is quite unexplored.
- Requires careful selection over all possible sets of relevant algorithms.
- Necessity to select top-k approaches which best fit the characteristics of data.
- Data-efficient methods necessary for querying least number of data points from domain expert.
- Prior knowledge in domain could accelerate model selection.

CONTRIBUTIONS

- unsupervised AD.
- to be acquired from domain expert (oracle).
- Propose a **novel ranking criterion** for selecting the best acquisition functions.
- Benchmark on various standard datasets in unsupervised AD settings.

A generic model selection framework to recommend top-k approaches using Bayesian Inference in

Leverage multiple existing/novel acquisition functions to identify most-informative data points/subsets

BAYESIAN INFERENCE

- Categorical likelihood distribution over all initial models.
- Dirichlet distribution is a conjugate prior for the Categorical/Multinomial distribution.

 $p_i|alpha_i, c_i \sim Dir(k, \alpha_i + c_i), \forall i = 1...k$

If prior distribution is Dirichlet, then corresponding posterior distribution is also Dirichlet.

 $\alpha_i + c_i, i = 1...k,$

Dirichlet Priors – domain knowledge/apriori beliefs over models – like taxonomy for the given data.

Bayesian Inference

Algorithm 1: Our Proposed Framework Acquisition Function AF, Subset Dataset \mathcal{D}_{subset} **Output:** Top-k models chosen K, Ranking Score η models concentrations α_i with $\mathcal{D}_{train}\{x\}$ Subset selection on $\mathcal{D}_{train}\{x\}$ using AF to obtain $\mathcal{D}_{subset}\{x\}$ $\mathcal{D}_{subset}\{x,y\}$

for i = 1 to I do

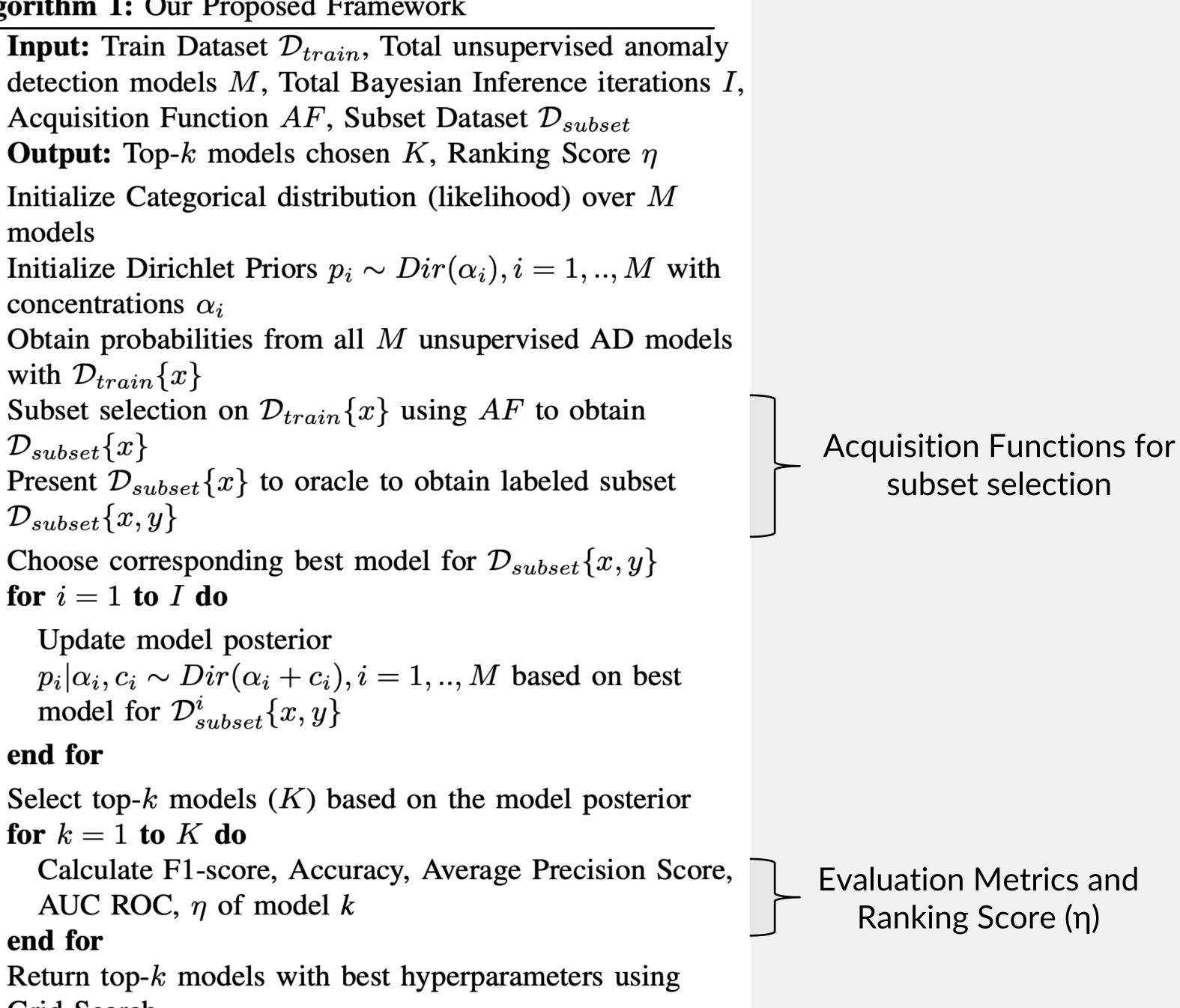
Update model posterior model for $\mathcal{D}_{subset}^{i}\{x, y\}$

end for

for k = 1 to K do

AUC ROC, η of model k end for

Grid Search



BAYESIAN INFERENCE FOR MODEL SELECTION

- We propose using Exact Inference and Stochastic Variational Inference for modelling posterior probabilities.
- Our framework supports **uniform/non-uniform Dirichlet priors** over AD models.
- Default setting uniform (when taxonomies are unavailable)
- The samples of the Dirichlet posterior would give us probabilities of the Categorical distribution over all AD models, from which **top-k** models are chosen.

ACQUISITION FUNCTIONS

$$abs(p_{ij} -$$

- probabilities across models) is the largest for some learners.
- the data points closest to the boundary threshold, and then selects the points with Max disagreement.
- **Max Entropy** Chooses data points that maximize the predictive entropy.

$$-\sum_{c} p(y=c|x, D_{trop})$$

$$\sigma^2 = \frac{\sum_{j=1}^{M} (p_{ij} - \mu)^2}{M}$$

Random – This acquisition function chooses data points uniformly at random.

Boundary – Selects points that are closest to the boundary threshold for each model, and are the most uncertain.

threshold)

Max Disagreement – Selects data points wherein each model's disagreement against consensus probabilities (mean

Boundary Max Disagreement – Combines **Boundary** and **Max Disagreement** acquisition functions, wherein it first selects

 $p_{rain})\log p(y=c|x, D_{train})$

Variance Entropy – Selects data points where the probability distribution across various models has the highest variance.

EXPERIMENTS

Five different anomaly detection datasets from DAMI.

Dataset	Instances	Attributes	Outliers (%)
Waveform	3443	21	2.9
Annthyroid	7129	21	7.49
Pima	768	8	34.9
Wilt	4819	5	5.33
PageBlocks	5393	10	9.46

- Subset sizes 5%, 10%, 20%, 30%, 40%
- Objective -
 - Use Ranking Score (η) to choose best-performing acquisition function

$$\eta = 1/k * \sum_{r=1}^{k} r_{subset} / (r_{subset} + abs(r_{full} - r_{subset}))$$

Select the top-5 unsupervised anomaly detection models using Bayesian Inference for EI & SVI.

Initial AD algorithms used -

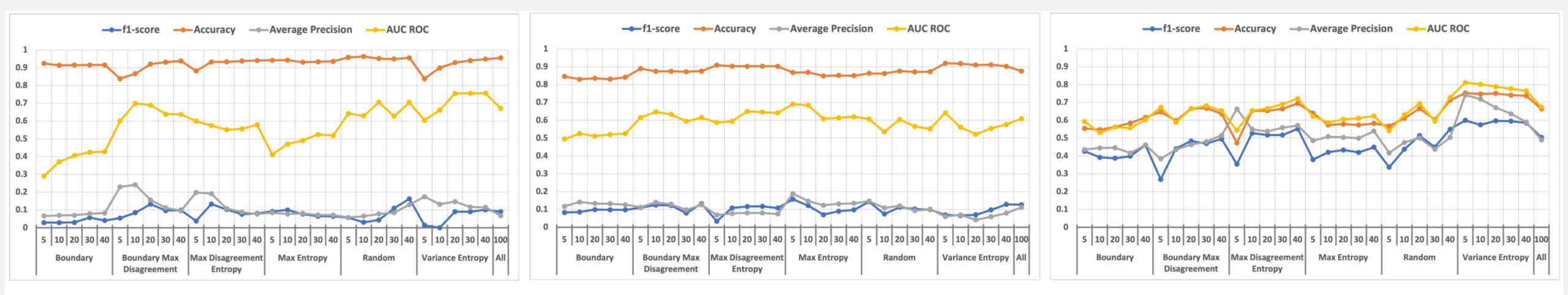
- COF
- **Isolation Forest**
- CBLOF
- LOF
- OCSVM
- KNN
- HBOS
- ABOD
- LODA

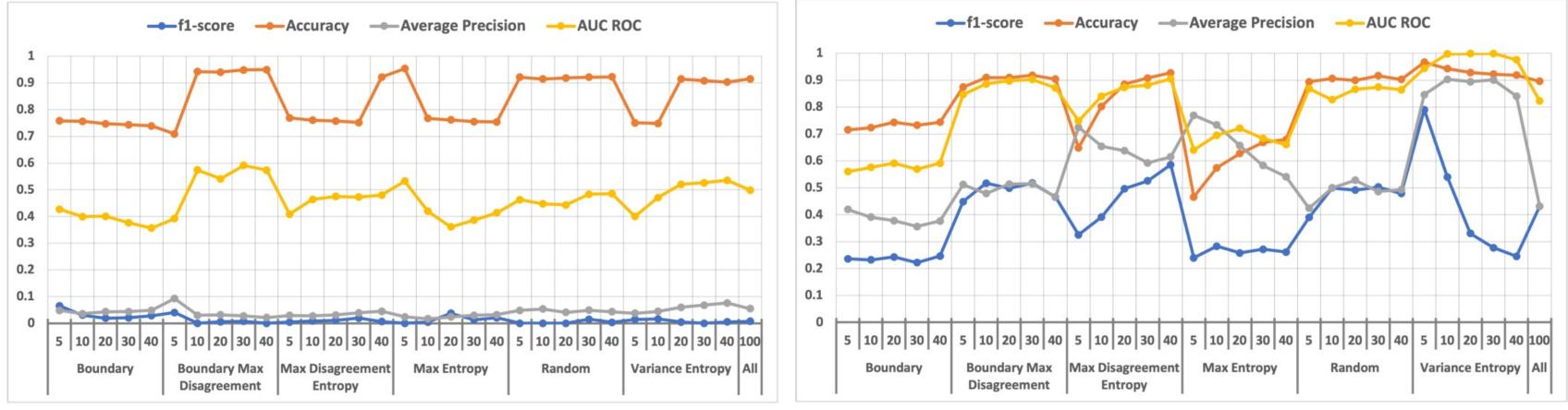
BAYESIAN INFERENCE -Exact Inference vs Stochastic Variational Inference

	Accuracy (%)		f1-score		Avg Precision		AUC ROC		Time (in sec)	
Dataset	EI	SVI	EI	SVI	EI	SVI	EI	SVI	EI	SVI
Waveform	92.395	92.365	0.072	0.062	0.111	0.106	0.577	0.564	0.322	1092.113
Annthyrroid	87.621	87.526	0.1	0.102	0.108	0.103	0.591	0.59	0.294	995.956
Pima	63.513	62.762	0.467	0.462	0.52	0.506	0.652	0.661	0.181	614.822
Wilt	83.375	83.265	0.013	0.011	0.041	0.039	0.467	0.458	0.184	630.476
PageBlocks	81.864	81.766	0.394	0.388	0.591	0.588	0.805	0.798	0.217	746.831

- Comparable performance in evaluation metrics across all datasets.
- Time taken for SVI is exponentially higher (at least 3000x).

ACQUISITION FUNCTIONS – RESULTS





(d) Wilt

(b) Annthyroid

(c) Pima

(e) PageBlocks

ACQUISITION FUNCTIONS – RESULTS

Variance Entropy

- **Average Precision decreases across subset sizes** for datasets with high % of anomalies (like Pima).
- Average Precision increases or is at least consistent across subset sizes for datasets with low % of anomalies.

Boundary Max Disagreement

- converges towards optimal Average Precision, f1-score.
- comparable efficiencies to all (100%) data.

AD datasets are highly imbalanced).

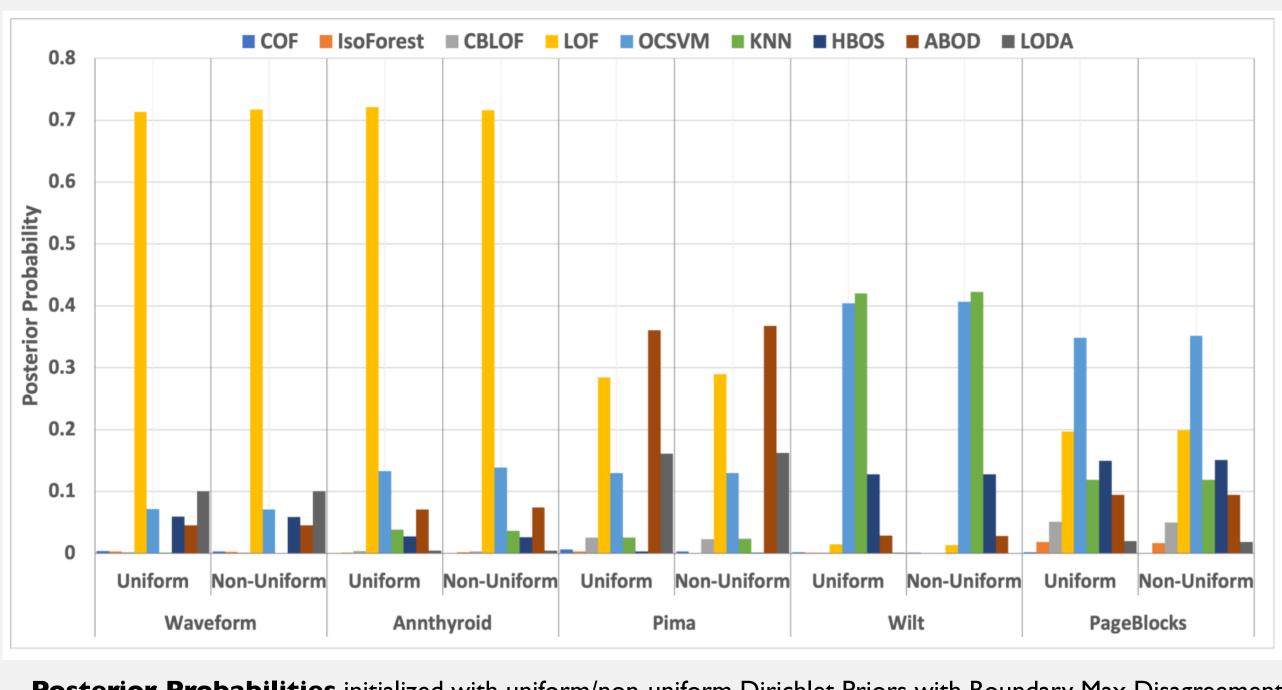
F1-score and Average Precision – primary metrics used (accuracy not emphasized since

MODEL SELECTION - RESULTS

Dataset with	Acquisition		Ranking				
Best Subset Size	Criterion	1	2	3	4	5	Score (η)
Waveform (100% data)	No acquisition	LOF	LODA	OCSVM	HBOS	ABOD	—
	Boundary	LOF	LODA	OCSVM	HBOS	ABOD	1.0
Waveform	Boundary Max Disagreement	LOF	LODA	OCSVM	HBOS	ABOD	1.0
with	Max Disagreement Entropy	LOF	LODA	OCSVM	HBOS	ABOD	1.0
40% subset	Max Entropy	LOF	LODA	OCSVM	HBOS	ABOD	1.0
40% Subset	Random	LOF	LODA	OCSVM	HBOS	ABOD	1.0
	Variance Entropy	LOF	LODA	OCSVM	HBOS	ABOD	1.0
Annthyroid (100% data)	No acquisition	LOF	OCSVM	ABOD	KNN	HBOS	_
	Boundary	LOF	ABOD	OCSVM	KNN	HBOS	0.883
Annthuroid	Boundary Max Disagreement	LOF	OCSVM	ABOD	KNN	HBOS	1.0
Annthyroid with	Max Disagreement Entropy	LOF	OCSVM	ABOD	HBOS	KNN	0.926
30% subset	Max Entropy	LOF	ABOD	KNN	OCSVM	HBOS	0.816
50% subset	Random	LOF	OCSVM	ABOD	KNN	HBOS	1.0
	Variance Entropy	LOF	OCSVM	HBOS	KNN	ABOD	0.863
Pima (100% data)	No acquisition	ABOD	LOF	LODA	OCSVM	KNN	—
	Boundary	ABOD	LOF	OCSVM	LODA	CBLOF	0.801
Pima	Boundary Max Disagreement	ABOD	LOF	LODA	OCSVM	CBLOF	0.89
with	Max Disagreement Entropy	LOF	ABOD	OCSVM	LODA	KNN	0.743
40% subset	Max Entropy	ABOD	LOF	LODA	OCSVM	KNN	1.0
40% Subset	Random	LOF	ABOD	LODA	OCSVM	CBLOF	0.733
	Variance Entropy	LOF	ABOD	OCSVM	LODA	KNN	0.743
Wilt (100% data)	No acquisition	KNN	OCSVM	HBOS	ABOD	LOF	—
	Boundary	OCSVM	KNN	LOF	ABOD	HBOS	0.696
Wilt	Boundary Max Disagreement	KNN	OCSVM	HBOS	ABOD	LOF	1.0
with	Max Disagreement Entropy	OCSVM	KNN	HBOS	LOF	ABOD	0.76
20% subset	Max Entropy	OCSVM	KNN	LOF	HBOS	ABOD	0.678
	Random	KNN	OCSVM	HBOS	ABOD	LOF	1.0
	Variance Entropy	OCSVM	HBOS	KNN	LOF	ABOD	0.678
PageBlocks (100% data)	No acquisition	OCSVM	LOF	HBOS	KNN	ABOD	—
	Boundary	LOF	ABOD	OCSVM	HBOS	CBLOF	0.551
DecoDicales	Boundary Max Disagreement	OCSVM	LOF	HBOS	KNN	ABOD	1.0
PageBlocks with	Max Disagreement Entropy	LOF	ABOD	OCSVM	IsoForest	KNN	0.539
	Max Entropy	ABOD	OCSVM	LOF	KNN	HBOS	0.662
10% subset	Random	OCSVM	LOF	HBOS	KNN	ABOD	1.0
	Variance Entropy	LOF	KNN	OCSVM	IsoForest	HBOS	0.535

MODEL SELECTION - RESULTS

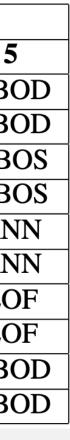
- Posterior Probabilities of non-uniform priors can adapt as well as posterior probabilities of non-uniform priors with respect to the chosen subset data.
- Top-5 recommended AD algorithms are also efficiently recommended.
- Top-k AD models are efficiently chosen with any chosen Dirichlet Priors coupled with acquisition functions for subset selection.



Posterior Probabilities initialized with uniform/non-uniform Dirichlet Priors with Boundary Max Disagreement

Dataset with	Dirichlet Prior	Ranking (top-5)							
Best Subset Size	Diffemet Filor	1	2	3	4	5			
Waveform with	Uniform	LOF	LODA	OCSVM	HBOS	AB			
40% subset	Non-Uniform	LOF	LODA	OCSVM	HBOS	AB			
Annthyroid with	Uniform	LOF	OCSVM	ABOD	KNN	HB			
30% subset	Non-Uniform	LOF	OCSVM	ABOD	KNN	HB			
Pima with	Uniform	ABOD	LOF	LODA	OCSVM	KN			
40% subset	Non-Uniform	ABOD	LOF	LODA	OCSVM	KN			
Wilt with	Uniform	KNN	OCSVM	HBOS	ABOD	LC			
20% subset	Non-Uniform	KNN	OCSVM	HBOS	ABOD	LC			
PageBlocks with	Uniform	OCSVM	LOF	HBOS	KNN	AB			
10% subset	Non-Uniform	OCSVM	LOF	HBOS	KNN	AB			

Top-5 recommended algorithms with uniform/non-uniform Dirichlet Priors with Boundary Max Disagreement



THANK YOU!

Contact

gautham.krishna.gudur@ericsson.com

Global AI Accelerator (GAIA), Ericsson R&D

Gautham Krishna Gudur

