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Fig. taken from OpenAI blog



UBIQUITOUS 
COMPUTING
(UbiComp)

Computing that appears anytime 
and everywhere.

Also widely called Pervasive 
Computing, Ambient 
Intelligence, etc.

Encompasses Mobile/Wearable 
Computing, Context-Aware 
Computing and the likes



WEARABLE/
MOBI-QUITOUS

COMPUTING

• Expansive growth of usage of 
mobile phones, smartwatches 
across various users.
• Significant research in the 

field of ubiquitous & 
mobile/wearable computing.
• Data from sensors embedded 

in mobiles/wearables 
conveniently provide a way to 
extract contextual, behavioral 
information of users.



Applications particularly 
gaining importance in such 
fields are:
• Pervasive Healthcare
• Physical Activity Monitoring
• Fitness Tracking
• Emotion Recognition
• Gesture Recognition
and more …



RESOURCE

• Hardware – Constrained edge devices like RPi, Arduino, 
FPGA

• Communication Overhead – Privacy Preserving ML, 
Federated Learning, Distribute Learning

• Data – Limited Data (Few Shot Learning), Limited Labels
• Model – Classic ML or squeezed DL models
• Feature Extractor – Automatic or hand-picked
• Memory Overhead – Compression techniques
• Inference Engine – Quantization, Pruning
• Retraining – Active Learning, Online Learning
• Semi-Supervised, Unsupervised Learning

and many more …

Resource is a very broad term

Heterogeneities exist in everything!



IT IS VERY 
IMPORTANT TO BE 

RESOURCE-AWARE!!



AGENDA
• Quick walk-through of different applications/scenarios for marrying machine learning with 

resource-aware ubiquitous computing.

• Address challenges of resources at all levels that come up.
• To each problem, its own challenge. Hard to generalize to universal solutions apply across all 

scenarios and applications.
Few UbiComp/ML projects:

• Dynamic Gesture Recognition System using Machine Learning
• Incremental Learning on Constrained Devices for Human Activity Recognition
• On-Device Bayesian Active Learning
• On-Device Vision-Based Bus Stop Recognition System
• Resource-Constrained Federated Learning for Heterogeneous Labels and Models



Dynamic Gesture 
Recognition using 
Machine Learning

Gautham Krishna et al., A Generic Multi-Modal Dynamic Gesture 
Recognition System using Machine Learning, IEEE FICC ‘18

https://www.sigmobile.org/mobisys/2018/workshops/deepmobile18/papers/HARNet.pdf


GESTURE RECOGNITION APPLICATIONS 

• Developing aids for the hearing-
impaired using Sign Language 
interpretation

• Virtual Gaming
• Smart Home Environments
• Socially-Assistive Robotics
• Affective Computing



GESTURE RECOGNITION 
APPROACHES

Vision Based Approach
• Camera for tracking movements
• Higher Computational Overheads

Sensor (Haptic) Based Approach
• Cost-effective and Computationally Efficient
• Dependent on Environmental Stimuli
• Examples: Accelerometer, Gyroscope, 

Magnetometer



GESTURE RECOGNITION 
TYPES

Static Gesture Recognition

• Uniquely characterized to static Start and 
End points

• Analogous to an Image

Dynamic Gesture Recognition

• Requires the entire sequence of Gesture 
sample

• Analogous to Video



CHALLENGES IN 
CONVENTIONAL 

GESTURE 
RECOGNITION 

SYSTEMS

Requires instrumented and multifarious sensors

Failure to generalize across multiple users (modally 
inflexible)

Gesture specific feature extraction

Failure to handle disparate speeds of same gestures 
signed by various users

Application specificity and deployment in Low-cost 
platforms



GOALS OF 
OUR 

PROPOSED 
SYSTEM

Utilize only accelerometer-based datasets 
(containing g-values) – Sensor Minimization

Handle disparate speeds across gestures by 
leveraging unique features

Incorporate multi-modality across users (plug and 
play)

Provide flexibility to emphasize between 
classification accuracy and classification time

Deploy on a low-cost platform



GESTURE 
DATASETS

uWave Gestures Sony Gestures



FEATURE EXTRACTION

• We characterize a set of unique 
features that accurately represent 
a gesture signed by any user.

• Two transforms: Fast Fourier 
Transform (FFT) and Hilbert 
Transform (HT), are utilized to 
convert from time domain to 
frequency domain.

• Final set of features arrived by 
recursive feature elimination 
across all domains and 
transforms.



FEATURE 
EXTRACTION

INPUT

FEATURE 
VECTOR



EXPERIMENT

• ML classifiers were chosen over traditional algorithms like Dynamic Time Warping (DTW), as generalizing 
a look-up table (template) for each gesture is computationally inefficient and hard to establish in the 
user-independent paradigm.

• The ML classification algorithms used here are,
• Extremely Randomized Trees (Extra Trees)
• Random Forest
• Gradient Boosting
• Bagging
• Decision Trees
• Naive Bayes
• Ridge Classifier



END-USER 
MODELING

• The end-user is provided the choice of any 
one of three proposed modes of 
operation:
• User Dependent (UD): Estimator of how well 

the system performs when the train-test split 
is between the gestures of a single user. 

• Mixed User (UM): Representative of the 
complete set of gestures across all 
participants. 

• User Independent (UI): Employs a stratified k-
fold cross validation technique which 
corresponds to training on several users and 
testing on the rest.



EXPERIMENT

• The seven classifiers are simulated on a single 
board computing platform – Raspberry Pi 
Zero.

• Raspberry Pi Zero priced at 5$, makes it a low-
cost alternative to conventional computing 
modules.



RESULTS

Accuracy (in %) and Time (in seconds)



HARNet: Towards On-Device 
Incremental Learning using Deep 

Ensembles on Constrained 
Devices

Prahalathan et al., HARNet: Towards On-Device Incremental Learning using 
Deep Ensembles on Constrained Devices, EMDL ’18@ACM MobiSys ‘18

https://www.sigmobile.org/mobisys/2018/workshops/deepmobile18/papers/HARNet.pdf


DEEP 
LEARNING FOR

HUMAN 
ACTIVITY 

RECOGNITION

ALLEVIATES THE PROBLEM 
OF CRAFTING SHALLOW 
HAND-PICKED FEATURES

AUTOMATICALLY EXTRACTS 
DISCRIMINATIVE FEATURES

DOES NOT REQUIRE 
EXTENSIVE DOMAIN 

KNOWLEDGE

ENHANCES SCALABILITY 
AND GENERALIZABILITY



PROMINENT 
CHALLENGES 
IN ON-DEVICE 

HAR

1. On-Device Incremental Learning

• Model updation incrementally
• Facilitation of User Adaptability
• Complex deep architectures 

generally have high 
computational overheads, hence 
difficult to update models on-
device



PROMINENT 
CHALLENGES 
IN ON-DEVICE 

HAR

2. Heterogeneity

• Sampling rates, their instability 
due to different OS types, CPU 
load conditions and varied user 
characteristics among others
• Performance across various users 

and mobile phones in real-world 
is generally sub-optimal due to 
the aforementioned factors



GOALS OF OUR 
PROPOSED SYSTEM
• Develop a generic HAR model in 

heterogeneous conditions which 
supports Incremental Learning, and 
resource-friendly
• Systematic minimization of 

resources
• Effective training and deployment 

on a Mobile/Embedded platform, 
whilst achieving on-par accuracies 
compared to state-of-the art models
• Facilitate User Adaptability



HHAR 
DATASET

Allan et al., Smart Devices are Different: Assessing and Mitigating 
Mobile Sensing Heterogeneities for Activity Recognition, SenSys ’15



PRE-
PROCESSING

To handle varying sampling rates 

Obtain a rich representation of the 
signal components

Windowing & Decimation

Discrete Wavelet Transform (DWT)



WINDOWING 
& 

DECIMATION

• Split raw inertial data into non-overlapping two-second activity 
windows

• Result in disparate length windows due to varying sampling rates 
across phones

• Hence, Decimation – a Down-sampling technique is performed (to the 
lowest frequency) to ensure uniformity in window lengths

• A maximum of ~75% data reduction is observed for smartphones with 
the highest sampling frequency



DISCRETE 
WAVELET 

TRANSFORM 
(DWT)

• Better representation of raw inertial signals
• Captures well-defined temporal characteristics in frequency 

domain
• Approximation co-effs (low frequency components) only used, 

discarded Detail co-effs – obtaining a smoothened version
• Results in compression of data up to ~50%



MODEL

Intra-Axial Dependencies:

• Conv-1D: Kernel extracts characteristics from each axis individually. Two-layer 
stacked network (8 and 16 filters each) with 2x2 receptive field size, with 
BatchNorm and a 2x2 Max-pool layer.

• LSTM: Capturing temporal information in time-series data. Two-layer stacked 
LSTM network with 32 and 20 output cells each with a Hyperbolic Tangent (tanh) 
activation function.

• LSTM -> Conv-1D: Combining both local characteristics and temporal 
information. A single LSTM layer with 32 output cells followed by a convolutional 
Conv-1D layer of 8 filters with kernel size of 2 with BatchNorm and a 2x2 Max-
pool layer.

Inter-Axial Dependencies:

• Conv-2D: Capturing the interactions between data from three axes, thereby 
learning discriminative features across spatial dimensions. 

• Two-layer stacked network (8 and 16 filters each) with 3x3 receptive field size 
with BatchNorm and a Max-pool layer of size 3x2

The intra-axial and inter-axial models are stacked together for effective extraction of 
patterns.



MODEL

• Two fully-connected (FC) layers of 16 
and 8 neurons each, with Rectified 
Linear Unit (ReLU) activation 
functions are used. 

• Dropout is used as a regularization 
mechanism after each FC with a 
probability of 0.25.

• Softmax (negative log likelihood) 
probability estimations are used for 
classification of activities.

• Adam optimizer is used to minimize 
the Categorical cross-entropy 
classification loss.



HARNet
VARIANTS

• Three variants of architectures:
• HAR-CNet: Conv-1D -> Conv-2D
• HAR-LNet: LSTM -> Conv-2D
• HAR-LCNet: LSTM -> Conv-1D -> Conv-2D

• Performance evaluation using three modes: 
• Mixed Mode
• Device-Independent Mode
• User-Independent Mode



SENSOR MINIMIZATION

• Accuracies obtained from accelerometer + 
gyroscope are only ~1.5% higher than 
those of accelerometer alone across all 
three variants. 

• Hence, only accelerometer data is 
considered, thereby resulting in ~50% data 
reduction.



MODEL PERFORMANCE

• HAR-CNet is ~7x faster than the next-best 
performing model, HAR-LCNet in 
classification time with just ~1% difference 
in accuracy and F1 scores.

• Hence, we consider HAR-CNet as our final 
model, considering the computations done 
on embedded/mobile platforms. 



DEVICE-INDEPENDENT MODE

• To evaluate the model’s generalizing 
capabilities across various heterogeneous 
devices, a Leave-One-Device-Out cross 
validation technique was used.

• The cross-val accuracy and F1-score was 
observed to be 89.5% and 0.887 
respectively.



USER-INDEPENDENT MODE

• Stratified k-fold Leave-One-User-Out 
(testing on previously unseen users) cross 
validation.

• User ‘c’ achieves least accuracy which 
could attributed to physical build, posture 
and execution of activities. We hence 
perform Incremental Learning to enhance 
the accuracies of worst-performing users.



ON-DEVICE 
INCREMENTAL 

LEARNING

• Raspberry Pi 2 (similar H/W, S/W with predominant 
contemporary wearables), with the trained model weights 
being stocked.

• The portion of unseen users is governed by adaptation factor λ. 

• Initially, with just λ=0.25, for worst-performing user ‘c’, 
accuracy substantially increases by ~35%.



ON-DEVICE 
INCREMENTAL 

LEARNING

• For a particular user in Incremental Learning, the model 
adapts to the user’s recent behavioral pattern, thus leading 
to higher accuracies.

• 3 seconds per epoch.

• model size – ~0.5 MB.



ActiveHARNet: Towards On-
Device Deep Bayesian Active 
Learning for Human Activity 

Recognition

Gautham Krishna et al., ActiveHARNet: Towards On-Device Deep Bayesian 
Active Learning for Human Activity Recognition, EMDL ’19@ACM MobiSys ‘19

https://www.sigmobile.org/mobisys/2018/workshops/deepmobile18/papers/HARNet.pdf


PROMINENT
CHALLENGES IN 

ON-DEVICE 
HAR

Label Acquisition

• Real-time acquisition of labels 
(ground truthing) is hard
• Labelling load on oracle (user) 

needs to be reduced



GOALS OF OUR 
PROPOSED SYSTEM
• A generic HAR model which handles 

Incremental Learning on wearables, 
and is resource-friendly
• Active Learning, which queries the 

oracle only necessary (most-
informative) labels on-device
• Facilitate User Adaptability
• Test the generalizing Incremental 

Active Learning capabilities together 
on HAR and Fall Detection tasks



GOALS OF OUR 
PROPOSED SYSTEM
• A generic HAR model which handles 

Incremental Learning on wearables, 
and is resource-friendly
• Active Learning, which queries the 

oracle only necessary (most-
informative) labels on-device
• Facilitate User Adaptability
• Test the generalizing Incremental 

Active Learning capabilities together 
on HAR and Fall Detection tasks

But, 
Why Active Learning?



ACTIVE LEARNING

• A big challenge in many applications 
is obtaining labelled data.
• Active Learning (AL), over 

unsupervised techniques, can be 
used predominantly to substantiate 
the confidence on the queried data 
points.
• Instead of labeling hundreds of 

activities, an ideal system should 
query few labels in each activity.



BAYESIAN NEURAL NETS 
(BNNs)

• Offer a probabilistic interpretation to deep 
learning models.
• Incorporate Gaussian prior (probability 

distributions p(ω)) over our model 
parameters ω.
• Can possess and model uncertainty 

information.
Fig. taken from Prof. Yarin Gal’s blog



MODELING 
UNCERTAINTIES 

USING 
DROPOUT

• Dropout - a stochastic regularization technique 
can perform approximate inference over a deep 
Gaussian process
• Learns the model posterior uncertainties 

without high computational complexities over 
few stochastic iterations at both train/test times
• Termed Monte-Carlo Dropout (MC-Dropout)
• Equivalent to performing Variational Inference
• p(y∗|x∗,Dtrain) = ∫ p(y∗|x∗,ω) p(ω|Dtrain) dω

Yarin Gal et al., Dropout as a Bayesian Approximation: Representing 
Model Uncertainty in Deep Learning, ICML ‘16

https://arxiv.org/abs/1506.02142


MODELING 
UNCERTAINTIES 

USING 
DROPOUT

• Dropout - a stochastic regularization technique 
can perform approximate inference over a deep 
Gaussian process
• Learns the model posterior uncertainties 

without high computational complexities over 
few stochastic iterations at both train/test times
• Termed Monte-Carlo Dropout (MC-Dropout)
• Equivalent to performing Variational Inference
• p(y∗|x∗,Dtrain) = ∫ p(y∗|x∗,ω) p(ω|Dtrain) dω

Posterior

Yarin Gal et al., Dropout as a Bayesian Approximation: Representing 
Model Uncertainty in Deep Learning, ICML ‘16

https://arxiv.org/abs/1506.02142


BAYESIAN HARNet 
ARCHITECTURE

• Utilize HARNet architecture and treat it as a 
Bayesian Neural Net (with Dropout).
• Intra-Axial and Inter-Axial dependencies exploited 

using stacked Conv-1D and Conv-2D architectures.
• Pre-processing techniques – Windowing, 

Decimation (down-sampling) and Discrete 
Wavelet Transform (DWT).
• Conv-1D to extract characteristics within each axis 

(X, Y, Z of accelerometer data).
• Conv-2D to capture interactions between data 

from three axes, thereby learning discriminative 
features across spatial dimensions.



• Two stacked Conv-1D layers with 8 & 16 filters each 
size 2, BatchNorm, Max-Pool size 2 (Intra-axial)
• Two stacked Conv-2D layers with 8 & 16 filters each 

size 3x3, BatchNorm, Max-Pool size 3x2 (Inter-axial)
• Two Fully-Connected Layers with 16 & 8 neurons 

each and ReLU activations.
• Dropout drop probability of 0.3.
• Softmax Layer to estimate probability scores
• Categorical cross-entropy loss with Adam Optimizer
Refer paper for more details:

BAYESIAN HARNet 
ARCHITECTURE

Gautham Krishna Gudur er al., ActiveHARNet: Towards On-Device Deep 
Bayesian Active Learning for Human Activity Recognition, EMDL ‘19

https://arxiv.org/abs/1906.00108


ACQUISITION 
FUNCTIONS

• Uncertainty measures from Bayesian 
HARNet need to be quantified
• Arriving at most efficient set of data 

points (select k from n) to query from Dpool



ACQUISITION 
FUNCTIONS

Given incoming data point x and unknown label y with data D and parameters ω,

• Max Entropy: Maximize predictive entropy
H[y|x,D] := − ∑c p(y = c|x,D) log p(y = c|x,D) c 

• BALD (Bayesian Active Learning by Disagreement):
Maximize mutual information between predictions 
and model posterior 

I[y,ω|x,D] = H[y|x,D] − Ep(ω|D) H[y|x,ω]

• Maximize Variation Ratios:
variation-ratio[x] := 1 − max p(y|x,D) y

• Random Acquisitions: Select data points from 
pool uniformly at random.



DATASETS 
USED

Heterogeneous Human Activity Recognition (HHAR) Smartwatch Dataset

Smart Devices are Different: Assessing and Mitigating Mobile Sensing 
Heterogeneities for Activity Recognition, SenSys ‘15
• Utilizing accelerometer data from different wearables - two LG G 

smartwatches and two Samsung Galaxy Gears across nine users 
performing six activities: Biking, Sitting, Standing, Walking, Stairs-Up, 
Stairs-Down in real- time heterogeneous conditions.

Notch Wrist-worn Fall Detection Dataset
Smartfall: A smartwatch-based fall detection system using deep learning, 
Sensors ’18
• Utilizing wrist-worn accelerometer data from an off-the-shelf Notch 

sensor by seven volunteers across various age groups performing 
simulated falls and activities (activities are termed as not-falls) .



• User-Independent Incremental Active Learning is experimented on 
Raspberry Pi 2 (similar H/W, S/W with predominant contemporary 
wearables), with the trained model weights being stocked.

• The number of acquisition pool windows used for incremental active 
training can be governed by the acquisition adaptation factor η ∈ [0, 1].

ActiveHARNet
ARCHITECTURE

Gautham Krishna Gudur et al. ActiveHARNet: Towards On-Device Deep 
Bayesian Active Learning for Human Activity Recognition, EMDL ‘19

https://arxiv.org/abs/1906.00108


BASELINE EFFICIENCIES using Bayesian HARNet
• A stratified k-fold Leave-User-Out (testing on previously unseen users) cross validation 

technique was used for evaluating User Adaptability.
• Unseen user data split into test and pool data, pool treated as real-world data, test is 

untouched.

User ’d’ – 84%; User ’g’ – 36%; User ‘i’ - 25% Average f1 – 0.927

Average – 61% f1-score used since fall is a very rare-class

NotchHHAR



ActiveHARNet on HHAR
• Variation Ratios (VR) acquisition function performs the best. 
• User ‘i’ (least performing) – accuracy increase from 25% - 70% with just ~60 pool 

points. ~49% (η=0.49 - 60 pool points) of total 123 data points gives this 45% 
accuracy increase. With all 123 data points (100% - η=1.0), gives 73% accuracy.
• All users average: 61% (η=0) to 86% (η=1) for VR. η=0.4 gives near-equal 85.87%.



ActiveHARNet on Notch
• Variation Ratios (VR) acquisition function again performs the best here. 
• User 5 (least performing) – f1-score increases from ~0.92 - 0.95 with just 150 pool 

points (η=0.4). With all 265 data points (100% - η=1.0), gives 0.969 f1-score.
• All users average: 0.928 (η=0) to 0.943 (η=0.4) and to 0.948 (η=0.6) for VR.



INCREMENTAL 
ACTIVE 

LEARNING

• HHAR takes a model size of 315 kB, Notch takes 180kB.
• T=10 stochastic dropout iterations (1.4 sec per iteration) were used, hence 

total ~ 14 seconds for Bayesian Active Learning.
• Number of data points collected for each acquisition iteration can be bounded 

based on time or acquired count (number of data points) criterion. 
• Time is proposed as preferred metric, i.e., periodic updates at fixed intervals –

since oracle would only be able to remember recent trends in activities. 
• Cannot guarantee users to perform activities within given time frame, hence 

thresholding based on count of data points is not recommended.



A Vision-based Deep On-
Device Intelligent Bus Stop 

Recognition System

Gautham Krishna et al., A Vision-based Deep On-Device Intelligent Bus 
Stop Recognition System, PURBA ’19@ACM UbiComp ‘19

https://www.sigmobile.org/mobisys/2018/workshops/deepmobile18/papers/HARNet.pdf


BUS STOP 
RECOGNITION

Intelligent Public Transportation Systems -
cornerstone to any smart city, particularly 
Autonomous Vehicles.

Over 47% of people use buses as preferred 
public transport mode in the United States.

~76% of buses have automatic bus stop 
announcements.

In India, buses used to take over 90% of public 
transport in Indian cities.



BUS STOP RECOGNITION IN INDIA

• Second largest road network in the 
world.

• Conventionally, bus conductor intimates 
(whistles) when a bus stop arrives and 
announces its location aloud.

• Driver halts the bus.
• New sophisticated buses consist of pre-

defined queues – the sequence of bus 
stops are pre-loaded.

• Easier alternative to the conductor’s 
manual announcement of bus stops.



CHALLENGES IN AUTOMATIC BUS STOP 
RECOGNITION

Really difficult to identify 
the arrival of a bus stop on-

the-fly for buses to 
appropriately halt and 
notify its passengers.

Global Positioning System 
(GPS) look-up can be used 

for bus stops identification, 
however latency issues in 

the network.

Hard to localize, identify 
and halt the vehicle right in 
front of the bus stop using 

GPS.



CHALLENGES 
IN 

AUTOMATIC 
BUS STOP 

RECOGNITION 
IN INDIA

The landscapes and surroundings of bus stops 
dynamically change and evolve over time.

Rural and sub-urban Indian bus stops 
predominantly do not have bounded or localized 

spaces/lanes or even proper bus stops

Bus routes are periodically revised and 
repurposed based on demand and traffic 

patterns.

Necessary to not only know the sequence of bus 
stops, but also intelligently perceive the location 

of bus stop in order to halt at right location.



GOALS OF 
THE 

PROPOSED 
SYSTEM

To employ novel vision-based 
techniques to recognize bus 

stops on-device and eliminate 
the latency of a GIS/GPS 

look-up

The model should be able to 
handle new and existing bus 

stops
Incremental Learning/Data 

Augmentation

To incrementally handle 
the ever-changing 

surroundings of existing 
bus stops

To incorporate new bus 
stops with minimal/no 
human intervention, 
without performance 

degradation due to class 
imbalance

To automatically handle real-
time ground truthing/labeling 

of bus stops
Crowdsourcing/Active Learning

New Bus 
Stops

Exis
tin

g B
us 

Sto
ps



REAL-TIME 
DESIGN AND 
INFERENCE

• Unnecessary overheads in capturing images 
during the whole route during classification of bus 
stop (inference).

• Hence, the images are captured and classified 
only when speed of the bus is below a certain 
ideal threshold.

• The real-time speed can be acquired from the 
speedometer of the bus.

• The ideal minimum threshold (10 km/hr for 
instance) is subject to locality and traffic 
conditions.

• We propose two different classifiers – day and 
night classifier (differentiated using a light sensor).



DATASET
• The images of the bus stops were collected in 

and around the city of Chennai, India.
• Images were acquired using two 5 MP 

cameras placed in opposite directions.
• 8 bus stops during the day – 5 public urban 

and 3 rural bus stops.
• Images from 3 urban bus stops were also 

collected during the night.
• 90 images in each bus stop, 45 in each 

direction were collected.



EXAMPLES FROM 
THE DATASET



(BAYESIAN) 
CONVOLUTIONAL 

NEURAL 
NETWORKS

CNNs are powerful mechanisms for distinctive spatial 
representations and offer automatic, effective feature 
learning capabilities.

The acquired bus stops in real-time requires 
identification of discriminative features to handle 
evolving landscape changes.

This essentially is a scene classification problem, which 
CNNs are known to effectively handle.

Bayesian (Convolutional) Neural Networks are 
probability distributions (Gaussian priors) instead of 
point estimates, and this helps in modelling 
uncertainties.



MODELING 
UNCERTAINTIES 

USING 
DROPOUT

• Dropout - a stochastic regularization technique 
can perform approximate inference over a deep 
Gaussian process
• Learns the model posterior uncertainties 

without high computational complexities over 
few stochastic iterations at both train/test times
• Termed Monte-Carlo Dropout (MC-Dropout)
• Equivalent to performing Variational Inference
• p(y∗|x∗,Dtrain) = ∫ p(y∗|x∗,ω) p(ω|Dtrain) dω

Yarin Gal et al., Dropout as a Bayesian Approximation: Representing 
Model Uncertainty in Deep Learning, ICML ‘16

https://arxiv.org/abs/1506.02142


MODELING 
UNCERTAINTIES 

USING 
DROPOUT

• Dropout - a stochastic regularization technique 
can perform approximate inference over a deep 
Gaussian process
• Learns the model posterior uncertainties 

without high computational complexities over 
few stochastic iterations at both train/test times
• Termed Monte-Carlo Dropout (MC-Dropout)
• Equivalent to performing Variational Inference
• p(y∗|x∗,Dtrain) = ∫ p(y∗|x∗,ω) p(ω|Dtrain) dω

Posterior

Yarin Gal et al., Dropout as a Bayesian Approximation: Representing 
Model Uncertainty in Deep Learning, ICML ‘16

https://arxiv.org/abs/1506.02142


Bayesian CNN Architecture

• The images were resized to 32 × 32 × 3 and 
normalized (divided RGB pixel values by 
255 for easier model convergence).

• Utilize the CNN architecture, and treat it as a 
Bayesian Neural Net (with Dropout).

• We utilize 2 stacked CNN layers with BatchNorm 
and MaxPool layers between each layers, 
followed by two Fully-Connected Dense layers, 
with dropout of probability 0.3 between each FC 
layer.

• This is followed by a Linear Softmax layer, 
governed by the categorical cross-entropy loss.



INCREMENTAL 
LEARNING

• Used to update existing model with recent bus stop 
images which might have evolved with landscape 
changes. 

• Will emphasize on learning the most recent and salient 
features of that bus stop.

• The inherent bias towards the model updated with the 
recently acquired images is favorable.

But, Why?



INCREMENTAL 
LEARNING

• Used to update existing model with recent bus stop 
images which might have evolved with landscape 
changes. 

• Will emphasize on learning the most recent and salient 
features of that bus stop.

• The inherent bias towards the model updated with the 
recently acquired images is favorable.

But, Why?

• In a single bus stop, only the recently acquired data is 
sufficient to make accurate predictions, since the 
information from newer images are added periodically to 
the model.

• Hence, the memory and neural footprint of older images 
is not necessary.



ACTIVE LEARNING

• A big challenge in many real-time 
applications is obtaining labelled data.

• Active Learning/Crowdsourcing, over 
unsupervised techniques, is used 
predominantly to substantiate the 
confidence on the queried data points.

• Instead of labelling hundreds of bus 
stop images, an ideal system should 
query few labels in each bus stop.

• For instance, Google Waze 
(complementary to Google Maps).



ACQUISITION 
FUNCTIONS

• Uncertainty measures from Bayesian 
HARNet need to be quantified
• Arriving at most efficient set of data 

points (select k from n) to query from Dpool



ACQUISITION 
FUNCTIONS

Given incoming data point x and unknown label y with data D and parameters ω,

• Max Entropy: Maximize predictive entropy
H[y|x,D] := − ∑c p(y = c|x,D) log p(y = c|x,D) c 

• BALD (Bayesian Active Learning by Disagreement):
Maximize mutual information between predictions 
and model posterior 

I[y,ω|x,D] = H[y|x,D] − Ep(ω|D) H[y|x,ω]

• Maximize Variation Ratios:
variation-ratio[x] := 1 − max p(y|x,D) y

• Random Acquisitions: Select data points from 
pool uniformly at random.



DATA 
AUGMENTATION

• When a new bus stop is added, it becomes a 
necessity for the model to scale and handle 
the incoming data of the new class. 

• The acquired images from the new bus stop 
is predominantly lesser than that of existing 
classes which results in class imbalance. 

• Techniques like zoom, shear and rotation 
(small angle) used for generating new 
images, which almost resemble the images 
acquired from a real-time camera to ensure 
stratified training across all classes.



EXPERIMENT AND BASELINE 
RESULTS

• The system is deployed on a Raspberry Pi 2 in 
real-time, and the stocked model weights are 
updated on-device in an incremental manner.

• Initially, we train the model with only 7 bus 
stops (B1, B2, … B7) and call them existing 
classes, while the 8th class (B8) is treated as 
the new unseen bus stop – illustrates 
scalability.

• Training and testing – high accuracies of 
∼97% and ∼96% respectively.



RESULTS WITH & WITHOUT 
AUGMENTATION

• Initially, we assume only 4 images  were 
collected from either side of the new bus stop. 

• With just the 8 data points, accuracy – 86.25%. 
• However, the model when augmented with 

new B8 images sufficiently overcome class 
imbalance.

• Achieves an accuracy of 96.7% which is a 
∼10.5% increase in accuracy.

• Effectiveness of data augmentation strategies 
for new classes – ensures scalability of bus 
stops.



INCREMENTAL ACTIVE LEARNING
EXISTING CLASSES

• The training data with existing 7 classes  (B1, 
B2….B7) are split into pool (Dpool) and train 
(Dtrain).

• The initial accuracy with just 20% of train data is 
observed to be 64.28%.

• Variation Ratios (VR) performs the best, 
achieving ∼88% with just less than 250 data 
points (less than 50% of total Dpool). 



INCREMENTAL ACTIVE LEARNING
AUGMENTED CLASSES

• Similar training mechanism after data 
augmentation with (B1, B2….B8).

• Variation Ratios again performs the best again, 
with a classification accuracy of ∼90% with just 
∼180 images (∼37% of total Dpool).

• A good trade-off between accuracy and images 
actively acquired.

• After the first acquisition iteration, would 
typically require very few actively queried data 
points to achieve on-par classification accuracies 
of ∼96%.



INTELLIGENT 
INFERENCE

• Ideology is to instill biomimicry -- just like a human brain 
towards human-like behavior – not like conventional 
classification.

• Model acquires and classifies multiple iterative bus stop images 
on demand, until it can assure a confidence of at least α – ratio 
of mode of predicted classes to n.

• Typically, the threshold for α is set to a majority among the 
classified (α > 0.5 for 2 images, α ≥ 0.67 for 3 images, and so on).

• The number of images captured and classified during inference 
(n), is initially set to 2 and capped at 10 – (2 < n < 10).

• The proposed inference mechanism would steer the model 
towards near-100% accuracy.

• Termed misclassification only when n > 10, however even after 
numerous trials, did not falter with maximum value of n
reaching 5.



INCREMENTAL 
ACTIVE 

LEARNING

• The ConvNet takes a model size of 266 kB.

• T=10 stochastic dropout iterations (1.2 sec per iteration) were used.

• Can be customized depending on the locality and bus usage 
characteristics, like periodic per trip update, per day/night update, etc.

• Can be seamlessly integrated with vision-based autonomous vehicles.



Resource-Constrained Federated 
Learning with Heterogeneous 

Labels and Models

Gautham Krishna et al., Resource-Constrained Federated Learning 
with Heterogeneous Labels and Models, AIoT ’20@ACM KDD ‘20

https://www.sigmobile.org/mobisys/2018/workshops/deepmobile18/papers/HARNet.pdf


LEARNING FROM MULTIPLE DEVICES
ON THE EDGE

Practical Challenges
Privacy Concerns about sharing sensitive 
data to the cloud from local user devices

Low Latency between cloud and local 
devices

Collaborative and Distributed Machine Learning is now 
possible more than ever to help best utilize the 

information learnt from multiple IoT devices.



FEDERATED 
LEARNING

Algorithms are trained across a federation of 
multiple decentralized devices.

Effectively train a global/centralized model 
without compromising on sensitive data of 
various users.

Transfer of model weights and updates from 
local devices to cloud, rather than conventional 
sharing of data.

More Personalization; Minimal Latency; 
Privacy Preserving.

Picture taken from federated.withgoogle.com

https://federated.withgoogle.com/


FEDERATED LEARNING APPLICATIONS 

Picture taken from 
https://blog.ml.cmu.edu/2019/11/12/federated-learning-

challenges-methods-and-future-directions/

Picture taken from 
https://arxiv.org/pdf/1908.06847.pdf

HEALTHCARE IoT ON THE EDGE WIRELESS/TELECOM

https://blog.ml.cmu.edu/2019/11/12/federated-learning-challenges-methods-and-future-directions/
https://arxiv.org/pdf/1908.06847.pdf


PROMINENT CHALLENGES IN 
RESOURCE-CONSTRAINED 

FEDERATED LEARNING

• Communication Overheads – Reducing Latency
• Privacy Concerns – Sensitive Data Transfer
• Systems Heterogeneities – Hardware, Software, 

Network, Power (Resource Constraints)
• Statistical Heterogeneities

• Non-IIDness
• Model Heterogeneities
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PROMINENT CHALLENGES IN 
RESOURCE-CONSTRAINED 

FEDERATED LEARNING

• Communication Overheads – Reducing Latency
• Privacy Concerns – Sensitive Data Transfer
• Systems Heterogeneities – Hardware, Software, 

Network, Power (Resource Constraints)
• Statistical Heterogeneities

• Non-IIDness
• Model Heterogeneities
• Label Heterogeneities

What are Label Heterogeneities?

The flexibility to handle different 
labels across user devices



GOALS OF OUR 
PROPOSED SYSTEM

• A framework to allow flexible heterogeneous 
selection of labels, thereby leveraging information 
pertaining to specific classes (with and without label 
overlap).

• Flexibility in preferred local model architectures in a 
federated learning setting, for effective transfer 
learning between global and local models. 

• Empirical demonstration of the framework’s ability to 
handle different data distributions (statistical 
heterogeneities and non-IID) across various user 
devices.

• Demonstrating the feasibility of on-device 
personalized federated learning, and resource-
friendly; independent of users (User Adaptability).



PROPOSED FRAMEWORK
• Model scores, instead of model weights are sent to 

the cloud during every federated learning iteration.

• Build: We build the model on the incoming data 
pertaining to each local user at specific iteration.

• Local Update: Weighted average of scores across 
different iterations on same user. 

Ø We propose a weighted 𝛼-update, where 𝛼 is 
the ratio between the size of current private 
dataset and the size of public dataset.

Ø Governs the contributions of the new and old 
models.

• Global Update: Weighted average of scores across 
all users in same iteration. 

Ø 𝛽 parameter governs the weightage given to 
overlapping labels across users.



PROPOSED 
SYSTEM/

ARCHITECTURE



EXPERIMENTAL SETUP

• Animals-10 Dataset.
• 4 labels {Cat, Dog, Sheep, Elephant} simulated for 

15 iterations across 3 users. 
• D0 is the public dataset (also test dataset), with 

500 images per label – 2000 labels in total.
• Average the model scores on public dataset D0

from the built models in each iteration.
• Image data across different iterations are split with 

disparities in both labels and distributions of data 
(non-IID).

User 1 User 2 User 3 Global User

Model 
Arch.

2-Layer 
CNN

{16, 32}
Softmax 

Activation

3-Layer CNN
{16, 16, 32}

ReLU
Activation

2-Layer 
CNN

{16, 32}
ReLU 

Activation

—

Labels {Cat, 
Dog}

{Dog, 
Sheep}

{Sheep, 
Elephant}

{Cat, Dog, 
Sheep, Elephant}

Images 
per Iter

{500, 
500}

{500, 
500}

{500, 
500}

{500, 500, 
500, 500}

Alessio, C. Animals-10 Dataset, 2019. 
https://www.kaggle.com/alessiocorrado99/animals10



HETEROGENEITY 
IN MODEL 

ARCHITECTURES 
ACROSS 

ITERATIONS

Iterations New Model Arch.

User 1 Iteration 10 3-Layer ANN
(16, 16, 32) 

ReLU Activation

User 1 Iteration 14 1-Layer CNN
(16)

Softmax Activation

User 2 Iteration 6 3-Layer CNN
(16, 16, 32)

Softmax Activation

User 3 Iteration 5 4-Layer CNN
(8, 16, 16, 32)

Softmax Activation



AVERAGE INCREASE IN ACCURACIES 
ACROSS USERS

• Accuracies of all global updates in each user are 
deterministically higher than their respective 
accuracies of local updates.

• Information gain in User 2, maximum overlapped 
labels; more robust in global updates.

• Overall increase of ~16.7% across all three users.

Local 
Update

Global 
Update

Accurac
y 

Increase
User 1 63.66 81.02 17.36

User 2 74.3 97.47 23.17
User 3 68.72 78.02 9.3

Average 68.89 85.5 16.7



LOCAL MODEL
ACCURACY

vs
ITERATIONS

Local Update signifies the accuracy of each local 
updated model (after ith iteration) tested on Public 
Dataset D0. 

Global Update signifies the accuracy of the 
corresponding global updated model (after ith
iteration) tested on Public Dataset D0.

{Cat, Dog} {Sheep, Elephant}{Dog, Sheep}
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FINAL GLOBAL 
AVERAGE 

ACCURACIES
vs

ITERATIONS



ON-DEVICE 
PERFORMANCE

• On-device performance of our proposed 
framework is experimented on a Raspberry Pi 2.

• Similar (HW/SW) specifications with that of 
predominant contemporary IoT/edge/mobile 
devices.

• Clearly feasible.

Process Computational 
Time

Training time per 
epoch in a FL 

iteration

1.8 sec

Inference time 15 ms



CONCLUSION

• A unified method with to handle both heterogeneous labels and model 
architectures in Federated Learning setting.

• Both global and local updates require computation of global model 
accuracy and are weighted based on it (𝛼 and 𝛽 updates). 

• Overlapping labels are found to make our framework robust, and also 
helps in effective accuracy increase.

• Exhibit on-device feasibility of federated learning and inference.



TAKEAWAYS

• Ubiquitous Computing is the future, and we are all a part of it, 
whether we know it or not.

• Enabling intelligence into mobile and edge devices is exciting, 
personalization at its best.

• Lots of interesting challenges in marrying UbiComp and ML/DL.

• There is a huge intersection of theory and applied ML in this space. 
Theoretically guaranteed and resource-aware/resource-
constrained algorithms are needed for application on such devices.

• Be resource-aware! Carbon footprint is extremely low, attitude 
change towards looking at ML problems from a resource-aware 
practical standpoint helps.



Contact:  

Gautham Krishna Gudur
gauthamkrishna.gudur@gmail.com

Let’s Connect!

THANK YOU!

QUESTIONS?


