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WEARABLE/
MOBI-QUITOUS
COMPUTING

* Expansive growth of usage of

mobile phones, smartwatches
across various users.

 Significant research in the field

of ubiquitous & wearable
computing.

e Data from sensors embedded

in wearables conveniently
provide a way to extract
contextual, behavioural
information of users.




Applications particularly

gaining importance in fields
such as health-care and walking walling-upstars
fitness tracking are

* Human Activity Recognition
(HAR)

* Fall Detection o o
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DEEP
LEARNING

FOR HAR

ALLEVIATES THE PROBLEM AUTOMATICALLY EXTRACTS
OF CRAFTING SHALLOW DISCRIMINATIVE FEATURES
HAND-PICKED FEATURES

DOES NOT REQUIRE ENHANCES SCALABILITY
EXTENSIVE DOMAIN AND GENERALIZABILITY
KNOWLEDGE



1. On-Device Incremental Learning

PROMINENT * Model updation incrementally
CHALLENGES * Facilitation of User Adaptability
IN ON-DEVICE | * Complex deep architectures

e generally have high

HAR . computational overheads, hence
| difficult to update models on-
device




PROMINENT 1

CHALLENGES

IN ON-DEVICE
HAR

2. Label Acquisition during
Incremental Learning

* Real-time acquisition of labels
(ground truthing) is hard

* Labelling load on oracle (user)
needs to be reduced



GOALS OF OUR
PROPOSED SYSTEM

* A generic HAR model which handles
Incremental Learning on wearables,
and is resource-friendly

* Active Learning, which queries the
oracle only necessary (most-
informative) labels on-device

* Facilitate User Adaptability

e Test the generalizing Incremental
Active Learning capabilities on HAR
and Fall Detection tasks
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* A big challenge in many applications

Retrain < Machine learning > iS Obtaining Iabe”ed data.
model
* Instead of labelling hundreds of

J activities, an ideal system should

Select queries query few labels in each aCt|V|ty

* Active Learning (AL), over
unsupervised techniques, is used
predominantly to substantiate the
confidence on the queried data
points.

G
Labeled

training
set

| -

Oracle (e.g. human annotator)

ACTIVE LEARNING




BAYESIAN NEURAL NETS
(BNNs)

e Offer a probabilistic interpretation to deep
learning models.

* Incorporate Gaussian prior (probability
distributions p(w)) over our model
parameters w.

e Can possess and model uncertainty
information.

Picture taken from Prof. Yarin Gal’s blog



MODELING
UNCERTAINTIES
USING
DROPOUT

* Dropout - a stochastic regularization technique
can perform approximate inference over a deep
Gaussian process

e Learns the model posterior uncertainties
without high computational complexities over
few stochastic iterations at both train/test times

* Termed Monte-Carlo Dropout (MC-Dropout)

* Equivalent to performing Variational Inference
* p(y* | x*,Dirain) = [P(y* | x*,w) p(w ] Dyryin) dw

Dropout as a Bayesian Approximation: Representing Model Uncertainty in
Deep Learning, ICML ‘16
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Bayesian HARNet Architecture

e Utilize HARNet architecture, and treat it as a
Bayesian Neural Net (with Dropout).

* Intra-Axial and Inter-Axial dependencies exploited
using stacked Conv-1D and Conv-2D architectures.

* Pre-processing techniques — Windowing,
Decimation (down-sampling) and Discrete Wavelet

Transform (DWT).

 Conv-1D to extract characteristics within each axis

(X, Y, Z of accelerometer data).

e Conv-2D to capture interactions between data
from three axes, thereby learning discriminative
features across spatial dimensions.

InertialData WindOWing &
from Sensors Decimation

!
DWT

Windowed Signals for each axis
of Inertial Data

Conv-1D l
T T g -
T ‘ T

Merge data from all axes

Intra-Axial

Conv-2D Inter-Axial
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Inertial Data ~ Windowing &

Bayesian HARNet Architecture et peematn

DWT
. . Windowed Signals for each axis
* Two stacked Conv-1D layers with 8 & 16 filters each of Inertial Data
size 2, BatchNorm, Max-Pool size 2 (Intra-axial) | ]C°]“']1D | —
* Two stacked Conv-2D layers with 8 & 16 filters each - |w o —
size 3x3, BatchNorm, Max-Pool size 3x2 (Inter-axial) Merge datall,mmauaxes
* Two Fully-Connected Layers with 16 & 8 neurons o Ilnt;z:
each and RelLU activations. I - e
* Dropout drop probability of 0.3. \H
* Softmax Layer to estimate probability scores Fla;t:mmmwmtm
* Categorical cross-entropy loss with Adam Optimizer @ ®8 O FCLayert: 16 Newons

~7

FC Layer 2: 8 Neurons

Softmax Layer

| Classiﬁcaﬁon Output |




HARNet
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HARNet: Towards On-Device Incremental Learning using Deep
Ensembles on Constrained Devices, EMDL ‘18



* Uncertainty measures from Bayesian

ACQU ISITION HARNet need to be quantified

FUNCITONS * Arriving at most efficient set of data points
(select k from n) to query from D,




* Max Entropy: Maximize predictive entropy
H[ylertrain] = Zc p(y = ClxiDtrain) IOg p(y =C | XIDtrain) C
e BALD: Maximise mutual information between

ACQUISITION predictions and model posterior
F U N C |TO N S Iy, wlx, Dtrain] = H[y|x, Dtrain] - Ep(wIDtrain) Hly|x, w]

e Maximise Variation Ratios:

variation-ratio[x] := 1 - max p(y|X, Dyin) Y

* Random Acquisitions: Select data points from
pool uniformly at random.



DATASETS

L

SED

Heterogeneous Human Activity Recognition (HHAR) Smartwatch Dataset

Smart Devices are Different: Assessing and Mitigating Mobile Sensing
Heterogeneities for Activity Recognition, SenSys ‘15

» Utilizing accelerometer data from different wearables - two LG G
smartwatches and two Samsung Galaxy Gears across nine users
performing six activities: Biking, Sitting, Standing, Walking, Stairs-Up,
Stairs-Down in real- time heterogeneous conditions.

Notch Wrist-worn Fall Detection Dataset

Smartfall: A smartwatch-based fall detection system using deep learning,
Sensors ’18

* Uses wrist-worn accelerometer data from an off-the-shelf Notch sensor
by seven volunteers across various age groups performing simulated
falls and activities (activities are termed as not-falls)



Model Trained

Training data on Server Inference Vodel Undation
A Bayesian Embedded on-Device |
& {: HARNet Dewce
| (with uncertainties) Incremental
Learning

Top k ﬁ

. Acquisition | U1ceen i Querying
ActiveHARNet =V | functions | Labels

ARCHITECTURE : S e

Active Learning

Real-world data
- A
A

e User-Independent Incremental Active Learning is experimented on
Raspberry Pi 2 (similar H/W, S/W with predominant contemporary
wearables), with the trained model weights being stocked.

* The number of acquisition pool windows used for incremental active
training can be governed by the acquisition adaptation factor n € [0, 1].




BASELINE EFFICIENCIES using Bayesian HARNet

» A stratified k-fold Leave-User-Out (testing on previously unseen users) cross

validation technique was used for evaluating User Adaptability.

User 'd’ — 84%; User ‘g’ — 36%; User ‘i’ - 25%

Accuracy (%)

HHAR

Average — 61%

Notch

Average f1 —0.927

f1-score used since fall is a very rare-class

User1 | User2 | User3 | User4 | User5 | User 6 | User 7
f1-score | 0.9326 | 0.9214 | 0.9357 | 0.9372 | 0.9195 | 0.9229 | 0.9248
Accuracy | 97.02 94.44 94.05 95.36 94.08 94.59 94.65




ActiveHARNet on HHAR

e Variation Ratios (VR) acquisition function performs the best. User ‘i’ (least
performing) — accuracy increase from 25% - 70% with just ~60 pool points.

e ~49% (n=0.49) of total 123 data points gives this 45% accuracy increase. With all 123
data points (100% - n=1.0), gives 73% accuracy.

e All users: 61% (n=0) to 86% (n=1) for VR. n=0.4 gives near-equal 85.87%.

— BALD = VarRatio MaxExtropy = Random n | Usera | Userb | Userc | Userd | Usere | Userf | Userg | User h | Useri | Avg.
80 0.0 | 57.83 74.86 60.5 83.79 67.25 76.77 35.78 67.5 24.66 61
0.2 | 8352 89.76 75.7 91.95 81.53 79.79 73.39 78.75 52.92 | 78.59
0.4 | 89.15 91.72 80.85 92.3 85.05 84.57 76.23 81 66.53 | 83.05
0.6 | 91.55 92.18 82.26 93.26 87.92 86.96 77.15 83.5 71.38 | 85.13
0.8 | 92.64 93.24 82.28 93.56 87.52 88.07 78.58 82.6 73.07 | 85.73
1.0 | 92.72 93.16 85.06 93.64 89.95 87.96 76.23 81.375 | 72.69 | 85.87

~ Accuracy (%)
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ActiveHARNet on Notch

 Variation Ratios (VR) acquisition function again performs the best here. User 5 (least
performing) — f1-score increases from 0.92 - 0.96 with just 150 pool points (n=0.4).

e With all 265 data points (100% - n=1.0), gives 0.969 f1-score.
e All users: 0.928 (n=0) to 0.943 (n=0.4) and to 0.948 (n=0.6) for VR.

— BALD = VarRatio — MaxExtropy =— Random n | User1l | User2 | User 3 | User4 | User 5 | User 6 | User 7 | Avg.

0.98 0.0 | 0.932 0.921 0.936 0.937 0.92 0.923 0.925 | 0.928

0.2 | 0.938 0.924 0.945 0.947 0.935 0.932 0.925 | 0.935

0.4 | 0.943 0.929 0.961 0.952 0.949 0.932 0.932 | 0.943

f1-score

P 0.6 | 0.949 0.929 0.965 0.952 0.956 0.945 0.936 | 0.948
// 0.8 0.943 0.937 0.968 0.965 0.956 0.953 0.942 0.952

0.94
1.0 | 0.952 0.937 0.965 0.956 0.969 0.945 0.936 | 0.951

100 150 200 250

Acquired_Windows



HHAR

Discrete Wavelet Transform
INCREMENTAL ~ Decmation | sams | -
ACTIVE Time taken per epoch

LEARNING

» HHAR takes a model size of 315 kB, Notch takes 180kB.

* T=10 stochastic dropout iterations (1.4 sec per iteration) were used, hence
total approx. of 14 seconds.

* Number of data points collected can be bounded based on time or count
(number of data points) criterion.

e Time is proposed as a benchmark since oracle would only be able to
remember recent trends of activities.

* Also, cannot expect users to keep performing activities within given time,
hence count of data points is not recommended.



& THANK YOU!

Gautham Krishna Gudur

Let’s chat! QU ESTIONS?




