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MOBI-QUITOUS COMPUTING

® The expansive growth of usage of
mobile phones across various users
has spawned a significant research
pursuit in the field of ubiquitous and
mobile computing.

® The data from sensors embedded in
the mobile phones conveniently
provide a way to extract contextual
information of the particular user.
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® One such application gaining importance in fields such as health-care and
fitness tracking is Human Activity Recognition (HAR).
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DEEP LEARNING FOR HAR

Alleviates the problem of crafting shallow hand-picked features
Automatically extracts discriminative features
Does not require extensive domain knowledge

Enhances scalability and generalizability



PROMINENT CHALLENGES IN HAR

On-Device Incremental Learning

® Facilitation of User Adaptability

® Complex deep architectures generally have high computational overheads
Heterogeneity

® Sampling rates, sampling rate instability due to different OS types, CPU load
conditions and varied user characteristics among others

® Performance across various users and mobile phones in real-world is generally
sub-optimal due to the aforementioned factors



GOALS OF OUR
PROPOSED SYSTEM

Develop a generic HAR model in heterogeneous conditions
Systematic minimization of resources

Effective training and deployment on a Mobile/Embedded platform,
whilst achieving on-par accuracies compared to state-of-the art
recognition models

Facilitate User Adaptability



DATASET
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DATASET PRE-PROCESSING

We perform the following pre-processing techniques on the dataset to
handle the varying sampling rates and to obtain a rich yet sparse
representation of the signal components

® Windowing and Decimation

® Discrete Wavelet Transform



WINDOWING AND DECIMATION

® Raw inertial data split into non-overlapping two-second activity windows

® Resultin disparate length windows due to varying sampling rates across phones
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® Hence, Decimation — a Down-sampling technique is performed (to the lowest frequency) to
ensure uniformity in window lengths

® A maximum of ~75% data reduction is observed for smartphones with the highest sampling

frequency



DISCRETE WAVELET TRANSFORM (DWT)

® Better representation of the raw inertial signals

® Captures well-defined temporal characteristics in frequency
domain

® The Approximation Coefficients (low frequency components)
are only used

® Results in compression of data up to ~50%



DISCRETE WAVELET TRANSFORM
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MODEL

® Intra-Axial Dependencies:

« Conv-1D: Convolutional kernel extracts characteristics from each
axis individually. We utilize a two-layer stacked network (8 and 16
filters each) with 2x2 receptive field size, followed by a Batch
Normalization layer and a 2x2 Max-pool layer.
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» LSTM: Capturing pattern information in the time-series data. We
utilize a two-layer stacked LSTM network with 32 and 20 output

cells each with a Hyperbolic Tangent (tanh) activation function.

®



MODEL

« LSTM -2 Conv-1D: Combining both local characteristics and temporal

information. We utilize a single LSTM layer with 32 output cells followed by a
convolutional layer of 8 filters with kernel size of 2, a Batch Normalization
layer and a 2x2 Max-pool layer.

® Inter-Axial Dependencies:

« Conv-2D: Capturing the interactions between data from three axes, thereby
learning discriminative features across spatial dimensions. We utilize a two-
layer stacked network (8 and 16 filters each) with 3x3 receptive field size,
followed by a Batch Normalization layer and a Max-pool layer of size 3x2



MODEL

The intra-axial patterns and inter-axial interactions are stacked together to
enable extensive analysis and modelling of activities.

Two fully-connected (FC) layers of 16 and 8 neurons each, with Rectified Linear
Unit (ReLU) activation functions are used. Dropout is used as a regularization
mechanism after each FC with a probability of 0.25.

Softmax (negative log likelihood) probability estimations are used for
classification of activities.

Adam optimizer is used to minimize the Categorical cross-entropy classification
loss.



MODEL ARCHITECTURE
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HARNet VARIANTS

® We experiment with the following three variants of architectures:
® HAR-CNet: Conv-1D - Conv-2D
® HAR-LNet: LSTM - Conv-2D

® HAR-LCNet: LSTM = Conv-1D = Conv-2D



RESULTS

We evaluate the performance of our models using the following three
modes:

® Mixed Mode
® Device-Independent Mode

® User-Independent Mode



MIXED MODE

® Stratified split of 80-20% was performed on different combinations of the
accelerometer and gyroscope inertial data for testing and training purposes.
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MIXED MODE

® Sensor Minimisation: Accuracies obtained from accelerometer +

gyroscope are only ~¥1.5% higher than those of accelerometer
alone across all three variants.

® Hence, only accelerometer data is considered, thereby resulting in
~50% data reduction.



MIXED MODE

HAR-CNet is ~7x faster than the next-best performing model, HAR-LCNet in

terms of classification time per activity sample with just ~1% difference in
accuracy and F1 scores.

Hence, we consider HAR-CNet as our final model, taking into account the
computations done on Embedded/Mobile platforms. Raspberry Pi 3 Model B
was utilized to experiment on the same.

Model Params | Accuracy
HAR-CNer | 31.800 05.68

HAR-LNet | 29910 0542

HAR-LCNer | 40.094




CONFUSION MATRIX

‘Stand’ | ‘Sit’ | ‘Walk’ | ‘Stairsup’ | ‘Stairsdown’ = ‘Bike’
‘Stand’ | 928 | 072 | 0 0 0 | 0
Sit’ 0.12 9988 0 0 0 0
‘Walk’ 0 | 0 | 90.19 0
Stairsup’ | 0 | 0 87.75 083
‘Stairsdown’ | 0 | 0 90.57 0
Bk’ | 073 | 0 | 0 0.73 048 | 98.06




DEVICE-INDEPENDENT MODE

® To evaluate the model’s generalizing capabilities across various heterogeneous
devices, a Leave-One-Device-Out cross validation technique was used.

® The cross-val score and F1-score was observed to be 89.5% and 0.887
respectively.
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USER-INDEPENDENT MODE

® A stratified k-fold Leave-One-User-Out (testing on previously unseen users)
cross validation technique was used for evaluating this mode.

We analyze the relationship between classification accuracies and number of
epochs for different users.

User ‘c’ achieves least accuracy which is attributed to physical build, posture
and execution of activities. We hence perform Incremental Learning to enhance
the accuracies of worst-performing users.



USER-INDEPENDENT MODE
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ON-DEVICE INCREMENTAL LEARNING

® We experiment user-based Incremental Learning for users ‘b’ and ‘c’ on Raspberry
Pi 3 Model B, with the trained model weights being stocked.

® The portion of unseen users is governed by adaptation factor A. Initially, with

A=0.25, the accuracies increased after performing Incremental Learning,
particularly for worst-performing user ‘c’, where it substantially increases by ~35%.
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ON-DEVICE INCREMENTAL LEARNING

® For a particular user in Incremental Learning, the model adapts to the user’s
recent behavioural pattern, thus leading to higher accuracies.

® The user-based incremental learning on Raspberry Pi takes 3 seconds per
epoch, with the stock model size being ~0.5 MB, which directly affects the
testing/classification time for an activity window.

Process Computational Iime
Inference time 17 ms
Discrete Wavelet Transform 0.5ms
Decimation 4 8ms
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