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Algorithms are trained across a federation of multiple
decentralized devices.

Effectively train a global/centralized model without
compromising on sensitive data of various users.

Transfer of model weights and updates from local devices to
cloud, rather than conventional sharing of sensitive data.

Privacy Preserving; Minimal Latency; More Personalization

ON-DEVICE FEDERATED
LEARNING FOR AUDIO

CLASSIFICATION

* Expansive growth in usage of
loT devices.

* Significant research on ML/DL
on-device for audio sensing.

* Applications of importance:
- Keyword Spotting
- Urban Sound Classification




PROMINENT CHALLENGES IN
FEDERATED LEARNING

New Class Identification across devices

Statistical Heterogeneities

e Label Heterogeneities
e Model Heterogeneities



ANONYMIZED DATA IMPRESSIONS

e Construct anonymized data without transferring local sensitive data in a zero-shot manner [1].

* Sample Softmax values:
- Create Class Similarity Matrix — similar weights between connections of penultimate layer to
the nodes of the classes.

T
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- From Dirichlet distribution (K classes, Concentration param C), sample the softmax values,
Softmax = Dir(K,C)
* Synthesize Data Impressions (D),

X = arg m)inch«j(Y‘;c , M(x))

by minimizing cross-entropy loss (L-g), where M is the model with random initialization and
yik are the softmax values sampled.

[1] Zero-Shot Knowledge Distillation in Deep Networks, ICML ‘19
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PROPOSED FRAMEWORK

Build: We build the model on the incoming data pertaining to
each local user.

Local Update: To obtain scores across different iterations on a
single user.

» When new classes are not reported, perform typical
federated learning workflow with weighted a-update.

» When new classes are reported, train the new model
with public and newly acquired data.
Global Update: Weighted average of scores across all users in
same iteration.

» When new classes are not reported, perform typical
federated learning workflow with parameter £5.

» When new classes are reported, create Anonymized
Data Impressions followed by k-medoids clustering.

Algorithm 1 Our Proposed Framework

Input: Public Dataset Dyo{xo, yo}, Private Datasets D}'n, Total users M, Total iterations I, La-
belSet [,,, for each user, Overall Public LabelSet Y,
Output: Trained Model scores fCI;

Initialize fg = 0 (Global Model Scores)
fori=1to [ do
for m =1to M do
Build: Model D;,, and predict fp: (zo)
Local Update:
Choice 1: New classes are not reported
foi (o) = f& (zb) + « fpi (x0), where fL(zk) are global scores of I,,, with m*" user,

len(D?))
len(Dy)

Choice 2: New classes are reported
Train a new model with Dy and D? (new data) together, and send weights of the last layer
(W?)) to global user.

end for

Global Update:

Choice 1: No user reports new classes

Update label wise

M
f&t = Z Bmfpi (xo), where
m=1

o =

If labels are unique
6 —9 . . .
acc(fpi+1(zo)) if labels are not unique

where acc(fpi+1(z0)) is the accuracy metric, defined by the ratio of correctly classified sam-
ples to total samples for a given local model.

Choice 2: Any user reports new classes . o
Create Data Impressions (DI) for each user m with weights W' (Section 2.2). Average DI of

all users with new classes, X* =Y~ o Xt , where Mg, is set of users with new label k.
k

Perform k-medoids clustering on X* across M, . Number of clusters = Number of new labels
(lnew)~

Update public dataset with new DI (X*), Dy = Do |J XY, add I ey to 1, and Y.
end for




Datasets used:

* Google Speech Commands (GKWS)
Total: 10 keywords
New Classes — {Stop, Go}

e Urban Sound 8K (US8K)

Total: 10 urban sounds
New Classes — {Siren, Street Music}

Preprocessing: Mel-frequency
cepstral coefficients (MFCC) with

windowing.

EXPERIMENTAL SETUP

User 1 User 2 User 3 Global User (Public Dataset)
Model Arch 2-Layer CNN {16, 32} | 3-Layer CNN {16, 16, 32}| 3-Layer ANN {16, 16, 32} .
) Softmax Activation RelLU Activation RelLU Activation
{Yes, No, {Up, Down, {Left, Right, {Yes, No, Up, Down
K d ’ 7 ? ?
eywords Up, Down} LEft, R|ght} On, Off} LEft, nght, On, Off}

Keyword Frames
per Iteration

{200-300, 200-300,
200-300, 200-300}

{200-300, 200-300,
200-300, 200-300}

{200-300, 200-300,
200-300, 200-300}

{300 * 8} = 2400

Urban
Sounds

{air conditioner,
car horn,
children playing}

{children playing,
dog bark,
drilling}

{drilling, engine idling,
gun shot,
jackhammer}

{air conditioner, car horn,
children playing, dog bark,
drilling, engine idling,
gun shot, jackhammer}

Sound Frames
per Iteration

{40-50, 40-50,
40-50}

{40-50, 40-50,
40-50}

{40-50, 40-50,
40-50, 40-50}

{50 * 8} =400
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3 users, 10 FL Iterations
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| GKWS | USSK
User Local | Global | Increase | Local | Global | Increase
User 1 89.684 | 93.166 3.482 76.526 | 80.214 3.688
User2 | 91.888 | 95.28 3.391 75272 | 77.944 2.672
User3 | 91.517 | 94.727 3.211 77.61 | 81.838 4.228
Average | 91.03 | 94.391 3.361 76.469 80 3.529

Accuracies of all global updates higher than their respective local update accuracies.
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HETEROGENEITIES
IN MODEL
ARCHITECTURES &
NEW CLASS
DISTRIBUTIONS
ACROSS FL USER
ITERATIONS

User FL Iteration

User 1 Iteration 16

User 1 Iteration 8

User 2 Iteration 4, 6

User 3 Iteration 5

User 2 Iteration 3, 7
User 6 Iteration 3, 5

User 9 Iteration 4

New Model

3-Layer ANN (16, 16, 32)
RelLU Activation

1-Layer CNN (16)
Softmax Activation

3-Layer CNN (16, 16, 32)
Softmax Activation

4-Layer CNN (8, 16, 16, 32)
Softmax Activation

New Class

Stop / Siren

Go / Street Music
Stop / Siren

Stop / Siren
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Urban Sounds - Local Update

Urban Sounds - Global Update
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Accuracy Increase

10 users, 30 FL Iterations

92.5 78.24
96.541 82.498
4.041 4.258

Google Speech Commands UrbanSound8K

Local

Global
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ON-DEVICE
PERFORMANCE

On-device performance of our proposed
framework is experimented on a Raspberry Pi 2.

Computational
Time

Training time per epoch 1.2 sec
Similar (HW/SW) specifications with that of in a FL iteration
pre(_zlomlnant contemporary loT/edge/mobile S Pp—
devices.

The size of the models used are 520 kB, 350 kB,
270 kB for the three users.

Clearly feasible.
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