HETEROGENEOUS ZERO-SHOT FEDERATED LEARNING WITH NEW CLASSES FOR AUDIO CLASSIFICATION

Gautham Krishna Gudur Ericsson R&D

Satheesh Kumar Perepu Ericsson Research

Algorithms are trained across a federation of multiple decentralized devices.

Effectively train a global/centralized model without compromising on sensitive data of various users.

Transfer of model weights and updates from local devices to cloud, rather than conventional sharing of sensitive data.

Privacy Preserving; Minimal Latency; More Personalization

ON-DEVICE FEDERATED LEARNING FOR AUDIO CLASSIFICATION

- Expansive growth in usage of IoT devices.
- Significant research on ML/DL on-device for audio sensing.
- Applications of importance:
 - Keyword Spotting
 - Urban Sound Classification

PROMINENT CHALLENGES IN FEDERATED LEARNING

Privacy Concerns about sharing sensitive data to the cloud from local user devices

Low Latency between cloud and local devices

System Heterogeneities - HW/SW, Network, Power (Resource Constraints)

New Class Identification across devices

Statistical Heterogeneities

- Label Heterogeneities
- Model Heterogeneities

ANONYMIZED DATA IMPRESSIONS

- Construct anonymized data without transferring local sensitive data in a zero-shot manner [1].
- Sample Softmax values:
 - Create *Class Similarity Matrix* similar weights between connections of penultimate layer to the nodes of the classes.

$$\mathbf{C}(i,j) = \frac{\mathbf{w}_i^T \mathbf{w}_j}{||\mathbf{w}_i||||\mathbf{w}_j||}$$

- From Dirichlet distribution (K classes, Concentration param C), sample the softmax values,

Softmax = Dir(K, C)

• Synthesize Data Impressions (DI),

$$ar{\mathbf{x}} = \arg\min_{\mathbf{x}} L_{CE}(\mathbf{y}_i^k, \mathcal{M}(\mathbf{x}))$$

by minimizing cross-entropy loss (L_{CE}), where M is the model with random initialization and y_i^k are the softmax values sampled.

[1] Zero-Shot Knowledge Distillation in Deep Networks, ICML '19

PROPOSED SYSTEM/ ARCHITECTURE

PROPOSED FRAMEWORK

- **Build:** We build the model on the incoming data pertaining to each local user.
- *Local Update:* To obtain scores across different iterations on a single user.
 - > When new classes are not reported, perform typical federated learning workflow with weighted α -update.
 - When new classes are reported, train the new model with public and newly acquired data.
- *Global Update:* Weighted average of scores across all users in same iteration.
 - > When new classes are not reported, perform typical federated learning workflow with parameter β .
 - When new classes are reported, create Anonymized Data Impressions followed by k-medoids clustering.

Algorithm 1 Our Proposed Framework

Input: Public Dataset $\mathcal{D}_0\{x_0, y_0\}$, Private Datasets \mathcal{D}_m^i , Total users M, Total iterations I, LabelSet l_m for each user, Overall Public LabelSet Y, Output: Trained Model scores f_G^I Initialize $f_G^0 = \mathbf{0}$ (Global Model Scores) for i = 1 to I do for m = 1 to M do

Build: Model \mathcal{D}_m^i and predict $f_{\mathcal{D}_m^i}(x_0)$

Local Update:

Choice 1: New classes are not reported

 $f_{\mathcal{D}_m^i}(x_0) = f_G^I(x_0^{l_m}) + \alpha f_{\mathcal{D}_m^i}(x_0)$, where $f_G^I(x_0^{l_m})$ are global scores of l_m with m^{th} user, $\alpha = \frac{len(\mathcal{D}_m^i)}{len(\mathcal{D}_0)}$

Choice 2: New classes are reported

Train a new model with \mathcal{D}_0 and \mathcal{D}_m^i (new data) together, and send weights of the last layer (\mathbf{W}_m^i) to global user.

end for

Global Update: Choice 1: No user reports new classes Update label wise

$$f_G^{i+1} = \sum_{m=1}^{M} \beta_m f_{\mathcal{D}_m^i}(x_0), \text{ where}$$
$$\beta = \begin{cases} 1 & \text{ If labels are unique} \\ \operatorname{acc}(f_{\mathcal{D}_m^{i+1}}(x_0)) & \text{ if labels are not unique} \end{cases}$$

where $\operatorname{acc}(f_{\mathcal{D}_m^{i+1}}(x_0))$ is the accuracy metric, defined by the ratio of correctly classified samples to total samples for a given local model.

Choice 2: Any user reports new classes

Create Data Impressions (DI) for each user m with weights \mathbf{W}_{m}^{i} (Section 2.2). Average DI of all users with new classes, $\mathbf{X}^{i} = \sum_{m \in M_{S_{k}}} \mathbf{X}_{m}^{i}$, where $M_{S_{k}}$ is set of users with new label k. Perform k-medoids clustering on \mathbf{X}^{i} across $M_{S_{k}}$. Number of clusters = Number of new labels (l_{new}) .

Update public dataset with new DI (\mathbf{X}^i), $\mathcal{D}_{new} = \mathcal{D}_0 \bigcup \mathbf{X}^i$, add l_{new} to l_m and Y. end for

EXPERIMENTAL SETUP

Datasets used:

Google Speech Commands (GKWS)
Total: 10 keywords
New Classes – {Stop, Go}

Urban Sound 8K (US8K) Total: 10 urban sounds New Classes – {Siren, Street Music}

Preprocessing: Mel-frequency cepstral coefficients (MFCC) with windowing.

		User 1	User 2	User 3	Global User (Public Dataset)
5)	Model Arch.	2-Layer CNN {16, 32} Softmax Activation	3-Layer CNN {16, 16, 32} ReLU Activation	3-Layer ANN {16, 16, 32} ReLU Activation	—
	Keywords	{Yes, No, Up, Down}	{Up, Down, Left, Right}	{Left, Right, On, Off}	{Yes, No, Up, Down, Left, Right, On, Off}
	Keyword Frames per Iteration	{200-300, 200-300, 200-300, 200-300}	{200-300, 200-300, 200-300, 200-300}	{200-300, 200-300, 200-300, 200-300}	{300 * 8} = 2400
	Urban Sounds	{air conditioner, car horn, children playing}	{children playing, dog bark, drilling}	{drilling, engine idling, gun shot, jackhammer}	{air conditioner, car horn, children playing, dog bark, drilling, engine idling, gun shot, jackhammer}
	Sound Frames per Iteration	{40-50, 40-50, 40-50}	{40-50, 40-50, 40-50}	{40-50, 40-50, 40-50, 40-50}	{50 * 8} = 400

AVERAGE ACCURACIES ACROSS USERS

3 users, 10 FL Iterations

(only new classes without heterogeneities)

GKWS			US8K			
User	Local	Global	Increase	Local	Global	Increase
User 1	89.684	93.166	3.482	76.526	80.214	3.688
User 2	91.888	95.28	3.391	75.272	77.944	2.672
User 3	91.517	94.727	3.211	77.61	81.838	4.228
Average	91.03	94.391	3.361	76.469	80	3.529

Accuracies of all global updates higher than their respective local update accuracies.

HETEROGENEITIES IN MODEL ARCHITECTURES & NEW CLASS DISTRIBUTIONS ACROSS FL USER ITERATIONS

User FL Iteration	New Model	New Class
User 1 Iteration 16	3-Layer ANN (16, 16, 32) ReLU Activation	_
User 1 Iteration 8	1-Layer CNN (16) Softmax Activation	_
User 2 Iteration 4, 6	3-Layer CNN (16, 16, 32) Softmax Activation	Stop / Siren
User 3 Iteration 5	4-Layer CNN (8, 16, 16, 32) Softmax Activation	-
User 2 Iteration 3, 7	-	Go / Street Music
User 6 Iteration 3, 5	_	Stop / Siren
User 9 Iteration 4	_	Stop / Siren

WITH NEW CLASSES & HETEROGENEITIES – LOCAL & GLOBAL UPDATES

10 users, 30 FL Iterations

Update	Google Speech Commands	UrbanSound8K
Local	92.5	78.24
Global	96.541	82.498
Accuracy Increase	4.041	4.258

Google Speech Commands

PCA (2-dim) – UNSUPERVISED CLUSTERING WITH K-MEDOIDS

ON-DEVICE PERFORMANCE

- On-device performance of our proposed framework is experimented on a Raspberry Pi 2.
- Similar (HW/SW) specifications with that of predominant contemporary IoT/edge/mobile devices.
- The size of the models used are 520 kB, 350 kB, 270 kB for the three users.
- Clearly feasible.

Process	Computational Time
Training time per epoch in a FL iteration	1.2 sec
Inference time	11 ms

Contact

Gautham Krishna Gudur

Satheesh Kumar Perepu

Let's chat!

THANK YOU!

QUESTIONS?