RESOURCE-CONSTRAINED FEDERATED LEARNING WITH HETEROGENEOUS LABELS AND MODELS FOR HUMAN ACTIVITY RECOGNITION

Gautham Krishna Gudur

Ericsson R&D

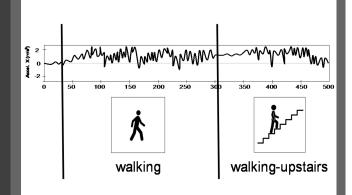
Perepu Satheesh Kumar Ericsson Research

IoT ON THE EDGE

- Expansive growth in usage of IoT devices with multiple sensors across various users.
- Significant research in the field of ML on the edge and ubiquitous computing.
- Data from sensors conveniently provide a way to extract contextual, behavioural information of users.

An application particularly gaining importance in fields such as health-care and fitness tracking is

Human Activity Recognition (HAR)



LEARNING FROM MULTIPLE DEVICES ON THE EDGE

Collaborative and Distributed Machine Learning is now possible more than ever to help best utilize the information learnt from multiple IoT devices.

Privacy Concerns about sharing sensitive data to the cloud from local user devices

Low Latency between cloud and local devices

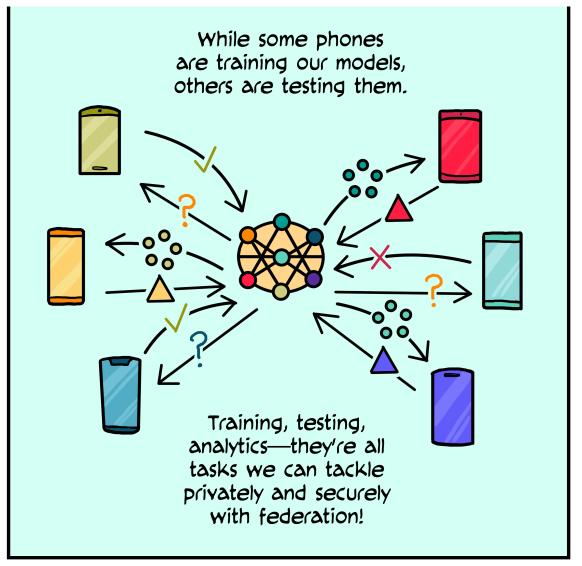
FEDERATED LEARNING

Algorithms are trained across a federation of multiple decentralized devices.

Effectively train a global/centralized model without compromising on sensitive data of various users.

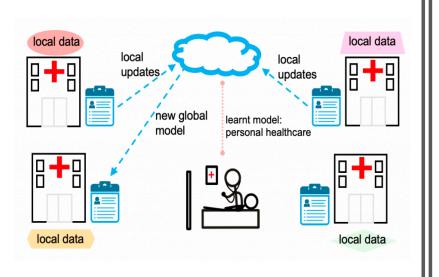
Transfer of model weights and updates from local devices to cloud, rather than conventional sharing of data.

More Personalization; Minimal Latency; Privacy Preserving.



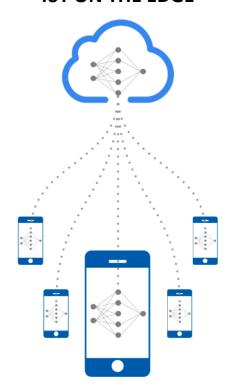
Picture taken from federated.withgoogle.com

HEALTHCARE

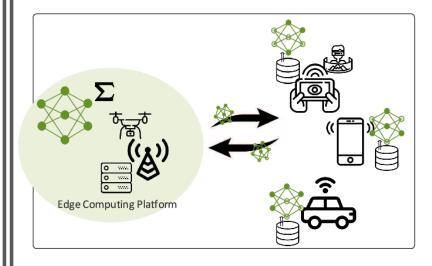


Picture taken from https://blog.ml.cmu.edu/2019/11/12/federated-learning-challenges-methods-and-future-directions/

IOT ON THE EDGE



WIRELESS/TELECOM

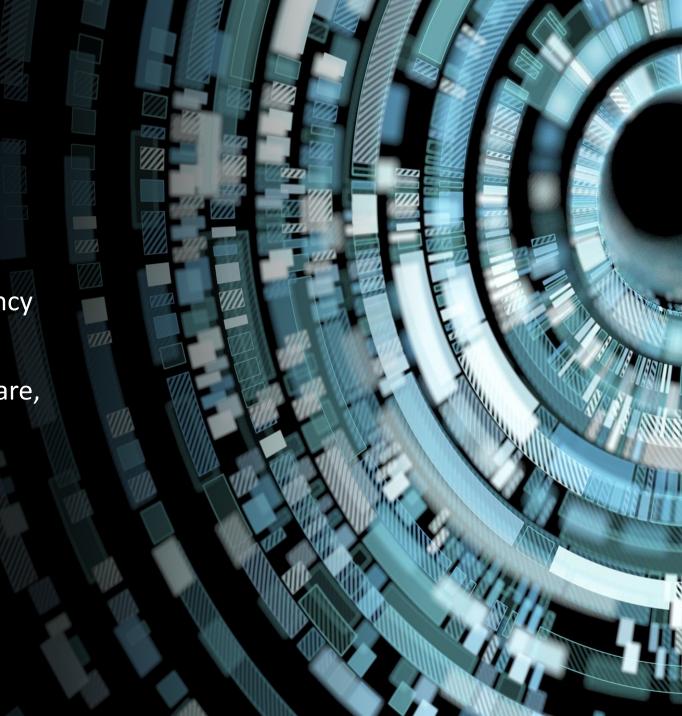


Picture taken from https://arxiv.org/pdf/1908.06847.pdf

FEDERATED LEARNING APPLICATIONS

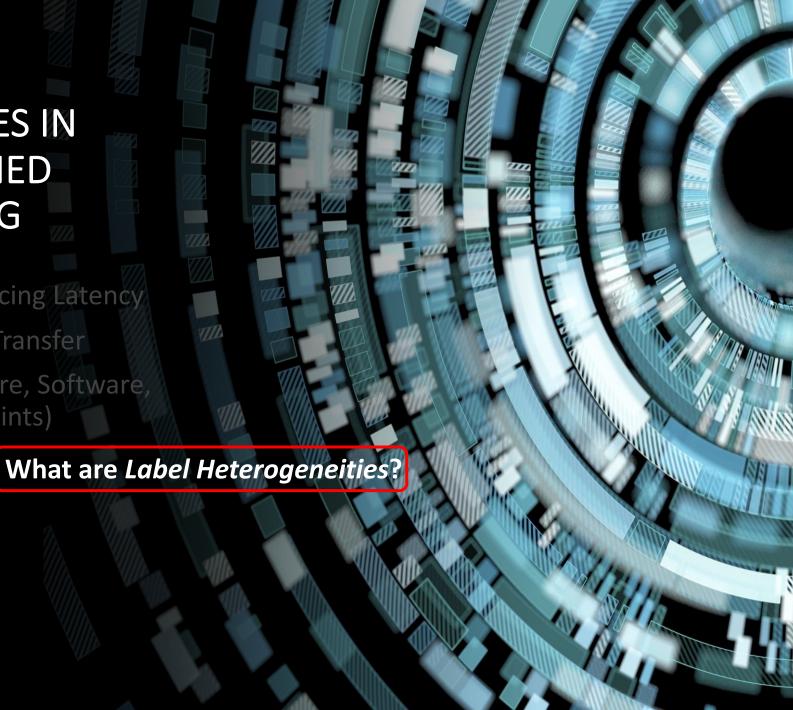
PROMINENT CHALLENGES IN RESOURCE-CONSTRAINED FEDERATED LEARNING

- Communication Overheads Reducing Latency
- Privacy Concerns Sensitive Data Transfer
- Systems Heterogeneities Hardware, Software, Network, Power (Resource Constraints)
- Statistical Heterogeneities
 - Non-IIDness
 - Model Heterogeneities



PROMINENT CHALLENGES IN RESOURCE-CONSTRAINED FEDERATED LEARNING

- Communication Overheads Reducing Latency
- Privacy Concerns Sensitive Data Transfer
- Systems Heterogeneities Hardware, Software, Network, Power (Resource Constraints)
- Statistical Heterogeneities
 - Non-IIDness
 - Model Heterogeneities
 - Label Heterogeneities



PROMINENT CHALLENGES IN RESOURCE-CONSTRAINED FEDERATED LEARNING

- Communication Overheads Reducing Latency
- Privacy Concerns Sensitive Data Transfer
- Systems Heterogeneities Hardware, Software, Network, Power (Resource Constraints)
- Statistical Heterogeneities
 - Non-IIDness
 - Model Heterogeneities
 - Label Heterogeneities

What are Label Heterogeneities?

The flexibility to handle different labels (activities) across user devices.

GOALS OF OUR PROPOSED SYSTEM

- A framework to allow *flexible heterogeneous selection of labels (activities)*, thereby leveraging information pertaining to specific classes (with and without label overlap).
- Flexibility in *preferred local model architectures* in a federated learning setting, for effective transfer learning between global and local models.
- Empirical demonstration of the framework's ability to handle different data distributions (*statistical heterogeneities and non-IID*) across various user devices.
- Demonstrating the *feasibility of on-device personalized federated learning*, and resource-friendly; independent of users (*User Adaptability*).

PROPOSED FRAMEWORK

- *Model scores,* instead of model weights are sent to the cloud during every federated learning iteration.
- **Build:** We build the model on the incoming data pertaining to each local user at specific iteration.
- Local Update: To obtain scores across different iterations on a single user.
 - ➤ Model Distillation Update: Acts as summarization of models' information from older FL iterations.
 - ightharpoonup Weighted α-update: α ratio between size of current private dataset and size of public dataset. Governs contributions of the new and old models.
- **Global Update:** Weighted average of scores across all users in same iteration.
 - \triangleright β parameter governs the weightage given to overlapping labels across users.

Algorithm 1 Our Proposed Framework (with two version choices)

Input: Public Dataset $\mathcal{D}_0\{x_0, y_0\}$, Private Datasets \mathcal{D}_m^i , Total users M, Total iterations I, LabelSet l_m for each user

Output: Trained Model scores f_G^I

Initialize $f_G^0 = \mathbf{0}$ (Global Model Scores)

for i = 1 to I do

for m=1 to M do

Build: Model \mathcal{D}_m^i and predict $f_{\mathcal{D}_m^i}(x_0)$

Local Update:

Choice 1 - Model Distillation Update:

Build a distilled model on only labels corresponding to local user's model with global averaged probabilities on public dataset D_0 . Now, update the model with the new data \mathcal{D}_m^i arriving in this iteration.

Choice 2 – Weighted α -update:

 $f_{\mathcal{D}_m^i}(x_0) = f_G^I(x_0^{l_m}) + \alpha f_{\mathcal{D}_m^i}(x_0)$, where $f_G^I(x_0^{l_m})$ are the global scores of only

the set of labels l_m with the m^{th} user, $\alpha = \frac{len(\mathcal{D}_m^i)}{len(\mathcal{D}_0)}$

end for

Global Update: Update label wise

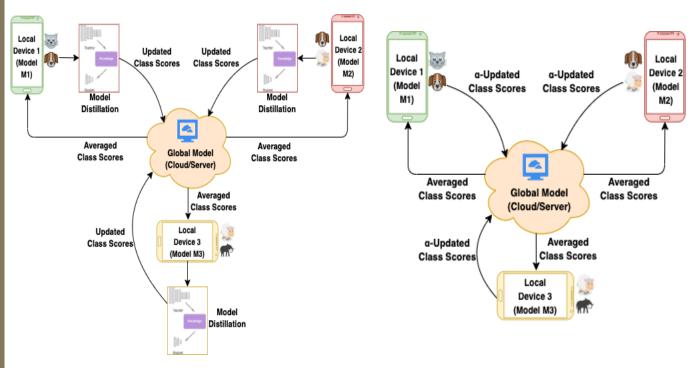
$$f_G^{i+1} = \sum_{m=1}^M eta_m f_{\mathcal{D}_m^i}(x_0), ext{ where}$$

$$\beta = \begin{cases} 1 & \text{If labels are unique} \\ \text{acc}(f_{\mathcal{D}_m^{i+1}}(x_0)) & \text{if labels are not unique} \end{cases}$$

where $\operatorname{acc}(f_{\mathcal{D}_m^{i+1}}(x_0))$ is the accuracy function of the given model, and is defined by the ratio of correctly classified samples to the total samples for the given local model

end for

PROPOSED SYSTEM/ ARCHITECTURE



Model Distillation Update Version

Weighted- α Update Version

EXPERIMENTAL SETUP

- Heterogeneity Human Activity Recognition (HHAR) Dataset.
- Preprocessing: Discrete Wavelet Transform (DWT) and Decimation on accelerometer data; substantial data size decrease.
- 4 activities {Sit, Walk, Stand, StairsUp} simulated for 15 iterations across 3 users.
- D_0 is the public dataset (also test dataset), with 2000 activity windows per label 8000 labels in total.
- Average the model scores on public dataset D₀ from the built models in each iteration.
- Activity data across different iterations are split with disparities in both labels and distributions of data (non-IID).

	User 1	User 2	User 3	Global User
Model Arch.	2-Layer CNN {16, 32} Softmax Activation	3-Layer CNN {16, 16, 32} ReLU Activation	3-Layer ANN {16, 16, 32} ReLU Activation	_
Activity Labels	{Sit, Walk}	{Walk, Stand}	{Stand, StairsUp}	{Sit, Walk, Stand, StairsUp}
Activity Windows per Iter	indows 2000} 2000}		{2000, 2000}	{2000, 2000, 2000, 2000}

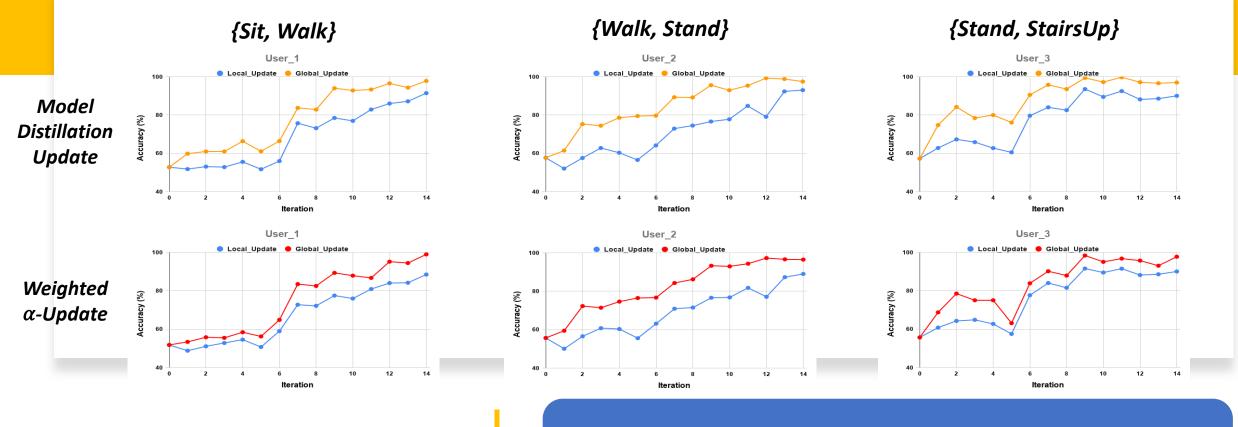
HETEROGENEITY IN MODEL ARCHITECTURES ACROSS ITERATIONS

Iterations	New Model Arch.		
User 1 Iteration 10	3-Layer ANN (16, 16, 32) ReLU Activation		
User 1 Iteration 14	1-Layer CNN (16) Softmax Activation		
User 2 Iteration 6	3-Layer CNN (16, 16, 32) Softmax Activation		
User 3 Iteration 5	4-Layer CNN (8, 16, 16, 32) Softmax Activation		

AVERAGE INCREASE IN ACCURACIES ACROSS USERS

	Model Distillation			Weighted $lpha$ -update		
	$Local_{-}Update$	${\bf Global_Update}$	Increase	$\mathbf{Local}_{-}\mathbf{Update}$	$Global_Update$	Increase
$User_{-1}$	68.38	77.61	9.23	66.98	74.29	7.31
\mathbf{User}_{-2}	70.82	84.4	13.58	68.88	81.9	13.02
\mathbf{User}_{-3}	77.68	87.9	10.22	76.57	83.7	7.13
Average	72.293	83.303	11.01	70.81	79.963	9.153

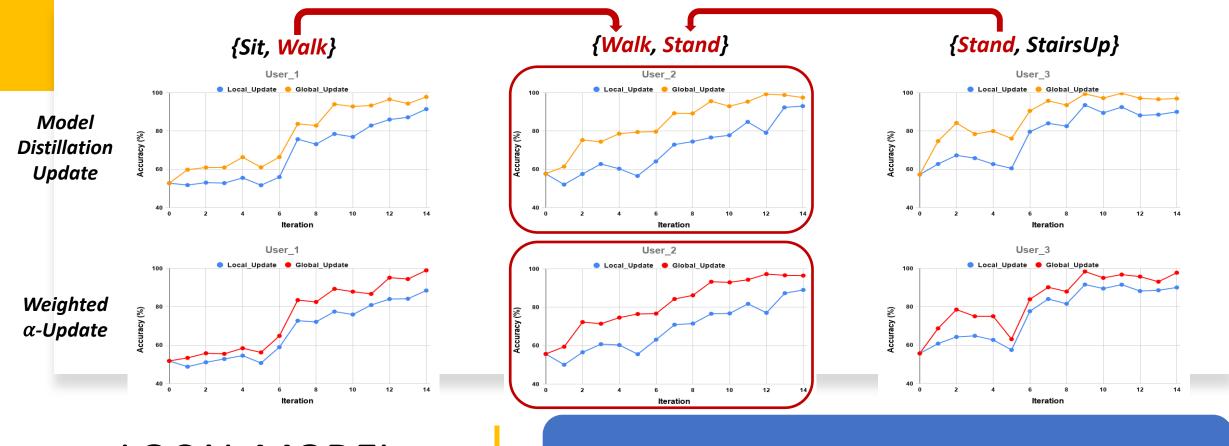
- Accuracies of all global updates in each user are deterministically higher than their respective accuracies of local updates for both proposed versions.
- Information gain in User 2, maximum overlapped labels; more robust in global updates.
- Overall increase,
 - Model Distillation Update: ~11.01% across all three users.
 - Weighted α -Update: ~9.153% across all three users.



LOCAL MODEL ACCURACY vs ITERATIONS

Local Update signifies the accuracy of each local updated model (after i^{th} iteration) tested on Public Dataset D_0 .

Global Update signifies the accuracy of the corresponding global updated model (after i^{th} iteration) tested on Public Dataset D_0 .

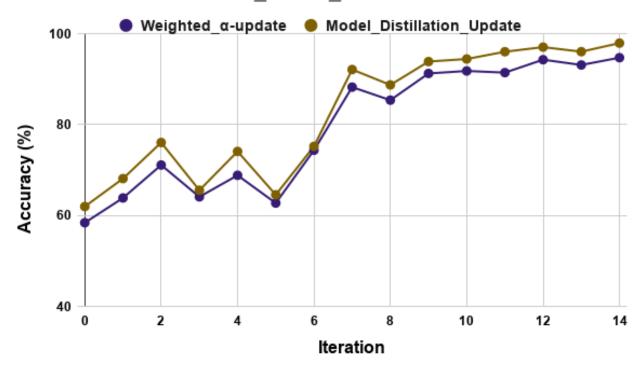


LOCAL MODEL
ACCURACY
vs
ITERATIONS

Local Update signifies the accuracy of each local updated model (after i^{th} iteration) tested on Public Dataset D_0 .

Global Update signifies the accuracy of the corresponding global updated model (after i^{th} iteration) tested on Public Dataset D_0 .

Global_Model_Accuracies



FINAL GLOBAL AVERAGE ACCURACIES vs ITERATIONS

ON-DEVICE PERFORMANCE

- On-device performance of our proposed framework is experimented on a Raspberry Pi 2.
- Similar (HW/SW) specifications with that of predominant contemporary IoT/edge/mobile devices.
- Clearly feasible.

Process	Computational Time	
Training time per epoch in a FL iteration	1.8 sec	
Inference time	15 ms	
Discrete Wavelet Transform (DWT)	0.45 ms	
Decimation	4.6 ms	

CONCLUSION

- A unified method with to handle both heterogeneous labels and model architectures in Federated Learning setting.
- Both global and local update accuracies are computed with two different local update versions Model Distillation and Weighted α -Update; and β global update for label overlap.
- Overlapping labels are found to make our framework robust, and also helps in effective accuracy increase.
- Exhibit on-device feasibility of federated learning and inference.

