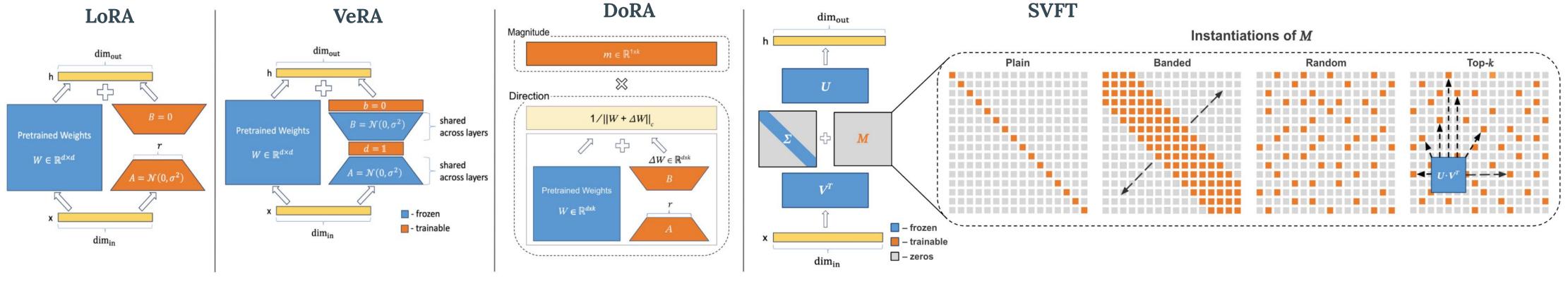
TEXAS The University of Texas at Austin

University of Cologne

SVFT: Parameter-Efficient Fine-Tuning with Singular Vectors

Vijay Lingam^{1*}, Atula Tejaswi^{1*}, Aditya Vavre^{1*}, Aneesh Shetty^{1*}, Gautham Krishna Gudur^{1*}, Joydeep Ghosh¹, Eunsol Choi¹, Alex Dimakis¹, Aleksandar Bojchevski², Sujay Sanghavi¹ University of Texas at Austin¹, University of Cologne² *Equal Contribution



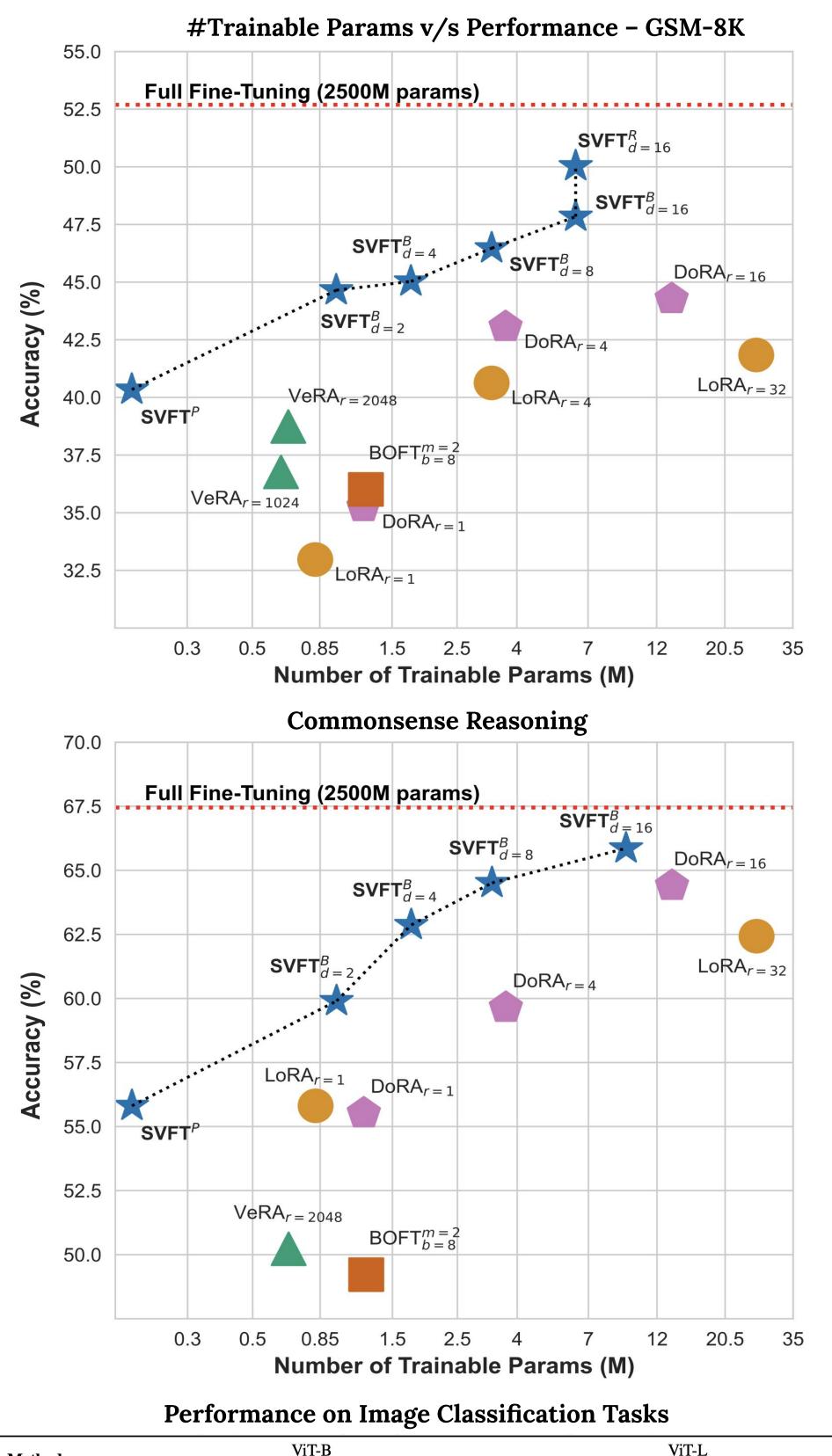
Background

LoRA-like parameter-efficient fine-tuning (PEFT) methods freeze pre-trained model weights W and inject learnable matrices ΔW

LoRA. The weight update ΔW is constrained to a low-rank decomposition: $h = W_0 x + \Delta W x = W_0 x + \underline{BA} x, B \in \mathbb{R}^{d \times r}, A \in \mathbb{R}^{r \times n}, r \ll \min(d, n)$

VeRA. A pair of low-rank random matrices is shared between layers and compact scaling vectors are learned: $h = W_0 x + \Delta W x = W_0 x + \Lambda_b B \Lambda_d A x$, where A and B are initialized randomly, frozen, and shared across layers, while Λ_b and Λ_d are trainable diagonal matrices

Experimental Results



DoRA. Decomposes pre-trained weight matrices into magnitude and direction components, and applies low-rank updates for directional updates: $h = \underline{m} \frac{W_0 + \Delta W}{\|W_0 + \Delta W\|_c} x = \underline{m} \frac{W_0 + \underline{BA}}{\|W_0 + \underline{BA}\|_c} x$, where $\|\cdot\|_c$ denotes the vector-wise norm of a matrix across each column

ⓒ Can we achieve higher performance with significantly fewer trainable parameters compared to other PEFT methods?

Formulation of SVFT

Update weight matrices using a sparse combination of their singular vectors: $h = W_0 x + \Delta W x = U(\Sigma + \underline{M})V^T x$, where U and V are frozen, and \underline{M} is a $d_1 \times d_2$ sparse trainable matrix with pre-determined and fixed sparsity pattern.

SVFT leverages the structure and geometry of pre-trained weights to induce perturbations.

Four choices for Ω , the a-priori fixed sparsity pattern of \underline{M} ,

- **Plain** (SVFT^P) constrain \underline{M} to be a diagonal matrix (most param-efficient)
- **Banded** $(SVFT_d^B)$ populate \underline{M} using a banded matrix, progressively making off-diagonals learnable
- **Random** $(SVFT_d^R)$ populate \underline{M} by randomly selecting *k* elements to be learnable
- **Top-** $k(SVFT_d^T)$ compute the alignment between left and right singular vectors as $u_i^T v_j$, and then select the top-k elements to be learnable

Properties of SVFT

a) **Structure**: If M is diagonal, then $W_0 + UMV^T$ has U as its left singular vectors and $\operatorname{sign}(\Sigma + M)V^T$ as its right singular vectors. If M is not diagonal, then U and V may no longer be the singular directions of the final matrix.

b) **Expressivity**: Given any target matrix P of size $d_1 \times d_2$, there exists an M such that $P = W_0 + UMV^T$, i.e., if M is fully trainable, any target matrix can be realized.

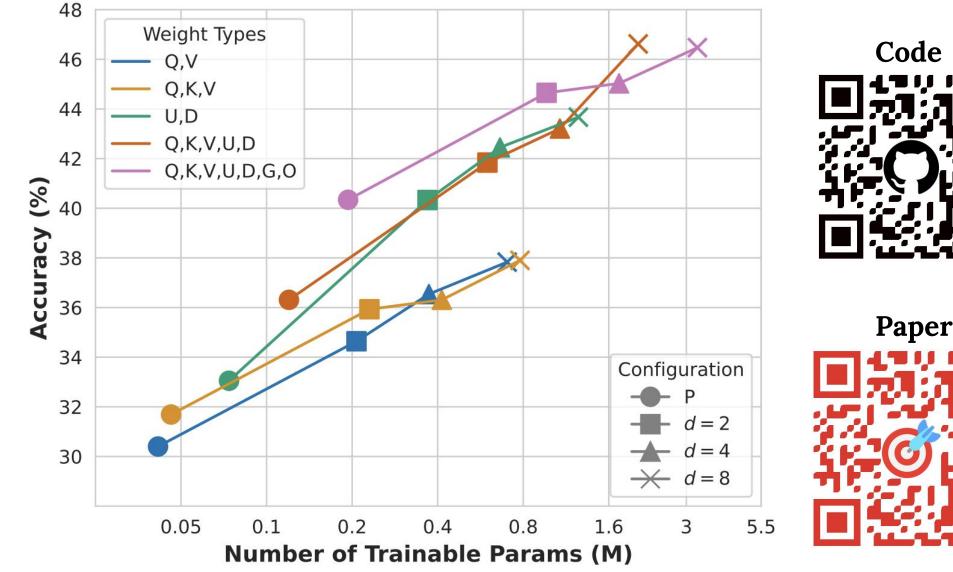
c) **Rank**: If M has k non-zero elements, then the rank of the update UMV^T is at most min $\{k, \min\{d_1, d_2\}\}$. For the same number of trainable parameters, SVFT can produce a much higher rank perturbation than LoRA (eventually full rank), but in a constrained structured subspace.

Results on fine-tuning with SVFT using different M parameterizations

Structure	Gemma-2B			Gemma-7B			LLaMA-3-8B		
	#Params	GSM-8K	MATH	#Params	GSM-8K	MATH	#Params	GSM-8K	MATH
Plain	0.2M	40.34	14.38	0.43M	73.50	27.30	0.48M	69.22	20.44
Banded	6.4M	47.84	15.68	19.8M	76.81	29.98	17.2M	75.43	24.44
Random	6.4M	50.03	15.56	19.8M	76.35	29.86	17.2M	74.07	23.78
Top-k	6.4M	49.65	15.32	19.8M	76.34	29.72	17.2M	73.69	23.96

Method							
Methou	#Params	CIFAR100	Flowers102	#Params	Food101	Resisc45	
Head	-	78.25	98.42	-	75.57	64.10	
Full-FT	85.8M	85.35	98.37	303.3M	77.83	76.83	
$LoRA_{r=8}$	1.32M	84.10	<u>99.23</u>	3.54M	77.13	79.62	
$DoRA_{r=8}$	1.41M	85.03	99.30	3.76M	76.41	78.32	
$BOFT_{m=4}^{b=4}$ $LoRA_{r=1}$ $DoRA_{r=1}$ $VeRA_{r=256}$	0.11M 0.16M 0.25M 24.6K	$ \frac{85.54}{84.86} 84.46 83.38 $	98.59 96.88 99.15 98.59	2.95M 0.44M 0.66M 0.06M	78.42 75.97 75.90 75.97	74.70 78.02 78.02 72.44	
$\frac{\text{SVFT}^{P}}{\text{SVFT}_{d=2}^{B}}$ $\frac{\text{SVFT}_{d=2}^{B}}{\text{SVFT}_{d=8}^{B}}$	18.5K	83.85	98.93	0.05M	75.95	71.97	
	0.27M	84.72	99.28	0.74M	<u>77.94</u>	79.70	
	0.93M	85.69	98.88	2.5M	78.36	73.83	

Performance variation with adapted weight matrices - GSM-8K with Gemma-2B



Workshop on Advancing Neural Network Training: Computational Efficiency, Scalability, and Resource Optimization (WANT@ICML 2024)