# Heterogeneous Zero-Shot Federated Learning with New Classes for Audio Classification

#### Motivation

- On-device Federated Learning characterization from multiple user devices for effective detection of audio frames.
- Address *new class identification* and *statistical heterogeneities* challenges from multiple local devices.
- Zero-shot FL framework tested on audio classification applications like Keyword Spotting and Urban Sound Classification.

### Anonymized Data Impressions

- Construct anonymized data without transferring local sensitive data from user devices in a zero-shot manner [1].
- Sample Softmax values:

- Create Class Similarity Matrix – similar weights between

connections of penultimate layer to the nodes of the classes.

$$\mathbf{C}(i,j) = \frac{\mathbf{w}_i^T \mathbf{w}_j}{||\mathbf{w}_i||||\mathbf{w}_j||}$$

- From Dirichlet distribution (K classes, Concentration parameter C), sample the softmax values, Softmax = Dir(K, C)

• Synthesize Data Impressions (DI),

 $\bar{\mathbf{x}} = \arg \min_{\mathbf{x}} L_{CE}(\mathbf{y}_i^k, \mathcal{M}(\mathbf{x}))$ 

by minimizing cross-entropy loss  $(L_{CE})$ , where M is the model with random initialization and  $y_i^k$  are the softmax values sampled.

### Proposed Framework

Algorithm 1 Our Proposed Framework

**Input:** Public Dataset  $\mathcal{D}_0\{x_0, y_0\}$ , Private Datasets  $\mathcal{D}_m^i$ , Total users M, Total iterations I, LabelSet  $l_m$  for each user, Overall Public LabelSet Y **Output:** Trained Model scores  $f_G^I$ Initialize  $f_G^0 = \mathbf{0}$  (Global Model Scores) for i = 1 to I do for m = 1 to M do **Build:** Model  $\mathcal{D}_m^i$  and predict  $f_{\mathcal{D}_m^i}(x_0)$ Local Update: Choice 1: New classes are not reported  $f_{\mathcal{D}_m^i}(x_0) = f_G^I(x_0^{l_m}) + \alpha f_{\mathcal{D}_m^i}(x_0)$ , where  $f_G^I(x_0^{l_m})$  are global scores of  $l_m$  with  $m^{th}$  user,  $lpha = rac{len(\mathcal{D}_m^i)}{len(\mathcal{D}_0)}$ **Choice 2: New classes are reported** Train a new model with  $\mathcal{D}_0$  and  $\mathcal{D}_m^i$  (new data) together, and send weights of the last layer  $(\mathbf{W}_m^i)$  to global user. end for **Global Update: Choice 1: No user reports new classes** Update label wise  $f_G^{i+1} = \sum eta_m f_{\mathcal{D}_m^i}(x_0)$ , where If labels are unique  $\operatorname{acc}(f_{\mathcal{D}^{i+1}}(x_0))$  if labels are not unique where  $\operatorname{acc}(f_{\mathcal{D}_m^{i+1}}(x_0))$  is the accuracy metric, defined by the ratio of correctly classified samples to total samples for a given local model. **Choice 2: Any user reports new classes** Create *Data Impressions (DI)* for each user m with weights  $\mathbf{W}_m^i$ . Average DI of all users with new classes,  $\mathbf{X}^{i} = \sum_{m \in M_{S_{k}}} \mathbf{X}^{i}_{m}$ , where  $M_{S_{k}}$  is set of users with new label k. Perform *k-medoids clustering* on  $\mathbf{X}^i$  across  $M_{S_k}$ . Number of clusters = Number of new labels  $(l_{new})$ .

Update public dataset with new DI ( $\mathbf{X}^i$ ),  $\mathcal{D}_{new} = \mathcal{D}_0 \bigcup \mathbf{X}^i$ , add  $l_{new}$  to  $l_m$  and Y. end for

### Gautham Krishna Gudur, Global Al Accelerator, Ericsson Satheesh Kumar Perepu, Ericsson Research

## **Overall Block Diagram**



#### Datasets and Preprocessing

- Google Speech Commands (GKWS) Total Classes – 10 keywords
  - New Classes {Stop, Go}
- Urban Sound 8K (US8K) Total Classes – 10 urban sounds

  - New Classes {Siren, Street Music}
- Preprocessing: Mel-frequency cepstral coefficients (MFCC), Window size – 50 ms

#### Experiments – Distribution of Models, Labels

|                            | User 1                                              | User 2 User 3                                |                                                       | Global User (Public Dataset)                                                                                    |  |
|----------------------------|-----------------------------------------------------|----------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--|
| Model Arch.                | 2-Layer CNN {16, 32}                                | 3-Layer CNN {16, 6, 32}                      | 3-Layer ANN {16, 16, 32}                              |                                                                                                                 |  |
|                            | Softmax Activation                                  | ReLU Activation                              | ReLU Activation                                       |                                                                                                                 |  |
| Keywords                   | {Yes, No,                                           | {Up, Down,                                   | {Left, Right,                                         | {Yes, No, Up, Down,                                                                                             |  |
|                            | Up, Down}                                           | Left, Right}                                 | On, Off}                                              | Left, Right, On, Off}                                                                                           |  |
| Keyword Frames             | {200-300, 200-300,                                  | {200-300, 200-300,                           | {200-300, 200-300,                                    | {300 * 8} = 2400                                                                                                |  |
| per Iteration              | 200-300, 200-300}                                   | 200-300, 200-300}                            | 200-300, 200-300}                                     |                                                                                                                 |  |
| Urban<br>Sounds            | {air conditioner,<br>car horn,<br>children playing} | {children playing,<br>dog bark,<br>drilling} | {drilling, engine idling,<br>gun shot,<br>jackhammer} | {air conditioner, car horn,<br>children playing, dog bark,<br>drilling, engine idling,<br>gun shot, jackhammer} |  |
| Sound Frames per Iteration | {40-50, 40-50,                                      | {40-50, 40-50,                               | {40-50, 40-50,                                        |                                                                                                                 |  |
|                            | 40-50}                                              | 40-50}                                       | 40-50, 40-50} {50 * 8} = 400                          |                                                                                                                 |  |

Heterogeneous Model Architectures, labels and Audio Frames per Iteration across all users

| Iteration             | New Model                   | New Class       |  |
|-----------------------|-----------------------------|-----------------|--|
| User 1 Iteration 6    | 3-Layer ANN (16, 16, 32)    |                 |  |
|                       | <b>ReLU</b> Activation      | -               |  |
| User 1 Iteration 8    | 1-Layer CNN (16)            | -               |  |
|                       | Softmax Activation          |                 |  |
| User 2 Iteration 4 6  | 3-Layer CNN (16, 16, 32)    | Stop/Siren      |  |
|                       | Softmax activation          |                 |  |
| User 3 Iteration 5    | 4-Layer CNN (8, 16, 16, 32) | -               |  |
| User 5 Relation 5     | Softmax activation          |                 |  |
| User 4 Iteration 3, 7 | -                           | Go/Street Music |  |
| User 6 Iteration 5, 3 | -                           | Stop/Siren      |  |
| User 9 Iteration 4    | <b>.</b> −                  | Stop/Siren      |  |

Results











#### References

[1] Gaurav Kumar Nayak, Konda Reddy Mopuri, Vaisakh Shaj, Venkatesh Babu Radhakrishnan, Anirban Chakraborty, (2019), "Zero-Shot Knowledge Distillation in Deep Networks" In: 36th International Conference on Machine Learning (ICML).

[2] Gautham Krishna Gudur, Bala Shyamala Balaji, Satheesh Kumar Perepu, (2020), "Resource-Constrained Federated Learning with Heterogeneous Labels and Models," In: The 3rd International Workshop on Artificial Intelligence of Things (AIoT), ACM SIGKDD.

Model Heterogeneities and New Classes across FL Iterations



| GKWS   |        |          |        | US8K   |          | Update   | GKWS   | US8K   |
|--------|--------|----------|--------|--------|----------|----------|--------|--------|
| Local  | Global | Increase | Local  | Global | Increase | Level    | 00 5   | 70.04  |
| 89.684 | 93.166 | 3.482    | 76.526 | 80.214 | 3.688    | Local    | 92.5   | /8.24  |
| 91.888 | 95.28  | 3.391    | 75.272 | 77.944 | 2.672    | Global   | 96.541 | 82,498 |
| 91.517 | 94.727 | 3.211    | 77.61  | 81.838 | 4.228    | T        | 10.511 | 4.050  |
| 91.03  | 94.391 | 3.361    | 76.469 | 80     | 3.529    | Increase | 4.041  | 4.258  |

3 users and 10 FL iterations – Without heterogeneities

10 users and 30 FL iterations – With heterogeneities

Iterations vs Local Update and Global Update Accuracies across all 10 users and 30 FL iterations

(a) GKWS - Different Class (b) GKWS - Same Class (c) US8K - Different Class (d) US8K - Same Class PCA (2 dimensions) with k-medoids Unsupervised Clustering of New Classes (Same/Different Classes)

#### **On-Device Performance**

• Raspberry Pi 2 used for evaluation of FL training and inference. • The size of the models used are 520 kB, 350 kB, 270 kB respectively.

| Process                                                    | Time                   |
|------------------------------------------------------------|------------------------|
| Training time per epoch<br>in an FL iteration ( <i>i</i> ) | $\sim 1.2 \text{ sec}$ |
| Inference time                                             | $\sim 11 \text{ ms}$   |

**On-Device Performance Metrics** 

