
Federated Learning with Heterogeneous Labels and Models for Mobile Activity Monitoring

Motivation

- Various mobile health applications require modeling of user behavior through Human Activity Recognition (HAR).
- On-device Federated Learning characterization from multiple user devices for effective personalized activity monitoring.
- Address statistical heterogeneities in HAR label (activity), model heterogeneities, non-IID data.
- Federated label-based aggregation, which leverages overlapping information gain across activities using a Model Distillation update.

Overall Block Diagram

Dataset and Preprocessing

Heterogeneity Human Activity Recognition (HHAR) Dataset

- Accelerometer data of four different mobile phones and six daily activities
- Two second non-overlapping windows
- Decimation (downsample) all windows to least sampling frequency (50 Hz)
- Discrete Wavelet Transform (DWT) to extract temporal and frequency information, with Approximate coefficients only

Gautham Krishna Gudur, Global Al Accelerator, Ericsson Satheesh Kumar Perepu, Ericsson Research

Algorithm 1 Our Proposed Framework

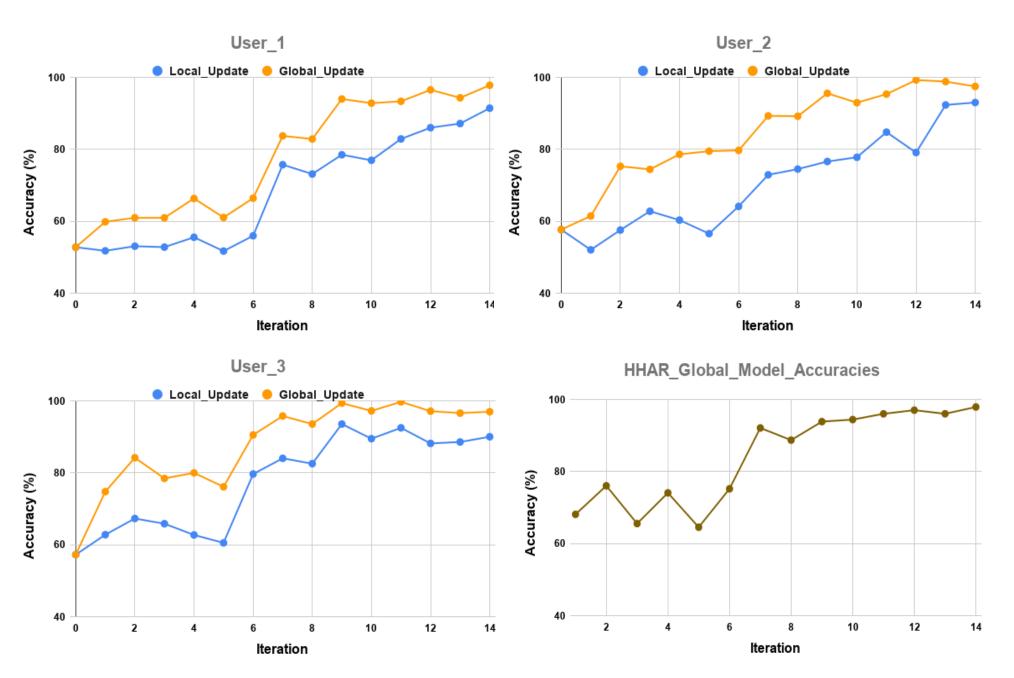
Input: Public Dataset $\mathcal{D}_0\{x_0, y_0\}$, Private Datasets \mathcal{D}_m^i , Total users M, Total iterations I, LabelSet l_m for each user **Output:** Trained Model scores f_G^I Initialize $f_G^0 = \mathbf{0}$ (Global Model Scores) for i = 1 to I do for m = 1 to M do **Build:** Model \mathcal{D}_m^i and predict $f_{\mathcal{D}_m^i}(x_0)$ Local Update (Model Distillation): Build a distilled model only on respective local model labels with the new data \mathcal{D}_m^i . end for Global Update: Update label wise $f_G^{i+1} = \sum \beta_m f_{\mathcal{D}_m^i}(x_0)$, where If labels are unique $\beta =$ if labels are not unique $\operatorname{acc}(f_{\mathcal{D}^{i+1}}(x_0))$ end for

Experiments – Distribution of Models, Activities

	User 1	User 2	User 3	Global User
Architecture	2-Layer CNN	3-Layer CNN	3-Layer ANN	_
	(16, 32)	(16, 16, 32)	(16, 16, 32)	
	Softmax	ReLU	ReLU	
	Activation	Activation	Activation	
Activities	{Sit <i>,</i>	{Walk,	{Stand,	{Sit, Walk,
	Walk}	Stand}	StairsUp}	Stand, StairsUp
Activity	{2000, 2000}	{2000, 2000}	{2000, 2000}	{2000, 2000,
Windows	= 4000	= 4000	= 4000	2000, 2000}
per iteration				= 8000

Heterogeneous Model Architectures, Activities and Activity Windows per Iterations across all users

Student Distillation Model: Simple 2-Layer ANN model (8, 16)


Iteration	New Model Architecture	
	3-Layer ANN	
User_1 Iteration_10	(16, 16, 32)	
	ReLU Activation	
	1-Layer CNN	
User_1 Iteration_14	(16)	
	Softmax Activation	
	3-Layer CNN	
User_2 Iteration_6	(16, 16, 32)	
	Softmax activation	
	4-Layer CNN	
User_3 Iteration_5	(8, 16, 16, 32)	
	Softmax activation	

Model Heterogeneities across Federated Learning Iterations

References

[1] H Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas, (2017), "Communication-efficient learning of deep networks from decentralized data" In: 20th International Conference on Artificial Intelligence and Statistics (AISTATS).

[2] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean, (2015), "Distilling the knowledge in a neural network, In: NIPS Deep Learning and Representation Learning Workshop.

Results

Iterations vs Local Update and Global Update Accuracies across all three users

	Local Update	Global Update	Acc. Increase
User 1	68.38	77.61	9.23
User 2	70.82	84.4	13.58
User 3	77.68	87.9	10.22
Average	72.293	83.303	11.01

On-Device Performance

Process	Computation Time
Training time per epoch in an FL iteration (<i>i</i>)	$\sim 1.7 \text{ sec}$
Inference time	$\sim 15 \text{ ms}$
Discrete Wavelet Transform	~0.45 ms
Decimation	~4.6 ms

On-Device Performance Metrics

