
LabelFrequencyTransformation forMulti-Label
Multi-ClassTextClassification

Raghavan A K†, Venkatesh Umaashankar‡, Gautham Krishna Gudur†
†Global AI Accelerator (GAIA), Ericsson; ‡Ericsson Research

Introduction
Goal: To classify short texts describing Ger-
man books into one or multiple classes, 8 generic
categories for Subtask (a) and 343 specific cat-
egories for Subtask (b). Our system (Team
Raghavan) comprises of three stages.
• Transform multi-label multi-class prob-

lem into single-label multi-class problem
– Build a Category Model.

• Build a Class Count Model – to predict
the number of classes a given input can
belong to.

• Transform single-label problem into multi-
label problem back again by selecting
top-k predictions from the category
model (with optimal k value predicted
from the class count model).

The code for our solution: https://github.
com/oneraghavan/germeval-2019.

Dataset
GermEval 2019 Task 1 dataset consists of Ger-
man books crawled from randomhouse.de, with
the following major attributes extracted:
• Title • Description • Author Name

• ISBN • Book Release Date
Total 343 categories across three levels of hier-
archy with 8, 93 and 242 categories respectively.
The label distribution is very imbalanced. The
top-level distribution is shown in Figure 1.

Figure 1: Top-level Label Distribution

Conclusion
In this work, we have successfully demonstrated
that traditional approaches like Linear Sup-
port Vector Machines, with a class count pre-
dictor model can effectively model Multi-label
Multi-class Hierarchical Text Classification of
German blurbs – GermEval Task 1. The au-
thors would like to emphasize that conventional
machine learning solutions would help in better
interpretability, and when pipelined/fused with
the right set of techniques, can effectively save
a lot computational resources and time.

References
[1] Benjamin Heinzerling and Michael Strube. BPEmb:

Tokenization-free Pre-trained Subword Embeddings
in 275 Languages. In Proceedings of the Eleventh In-
ternational Conference on Language Resources and
Evaluation (LREC 2018), 2018.

[2] Juan Ramos. Using tf-idf to determine word rele-
vance in document queries. In Proceedings of the
First Instructional Conference on Machine Learn-
ing, volume 242, pages 133–142, 2003.

[3] Y. Tang, Y. Zhang, N. V. Chawla, and S. Krasser.
Svms modeling for highly imbalanced classification.
IEEE Transactions on Systems, Man, and Cybernet-
ics, Part B (Cybernetics), 39:281–288, 2009.

Pre-Processing
The XML tags for each feature were parsed us-
ing the Python library – BeautifulSoup.

Byte-Pair Encoding (BPE):

• BPEs [1] create tokens from the titles and
descriptions (using BPEmb package).

• Identifies most common consecutive bytes
of German words and replaces with a byte
that does not occur within the data.

• ’Ein Blick hinter die’ might be converted
into ’ ein blick hinter die’ after
BPE with a vocabulary size of 25,000.

Term Frequency-Inverse Document Fre-
quency (tf-idf):

• tf-idf [2] vectors are from the BPE tokens.
Shows significance of a word in a document
in whole corpus.

• n-grams utilized – uni-grams, bi-grams
and tri-grams. Bi-grams yielded better ef-
ficiencies, compared to rest.

Authors’ data treated as a binomial attribute
(returns 1 if book was authored by that author,
else 0). Year from publication date, andGroup
ID, Publisher ID from the 13-digit ISBN are
represented as categorical features.

Overall Block Diagram

Model Description
The corpus has heavy class imbalance across all
levels, we choose a Support Vector Machine
(SVM) model [3] which utilizes a one vs rest
scheme, returns the best-fit hyperplane that cat-
egorizes data in n-dimensional space.

Squared-hinge loss is used for maximum-margin
classification that penalizes the violated margins
more strongly (quadratically).

l(y) = max(0, 1− t · y)2

where y is the classifier score; y = w.x+ b, w, b
are the parameters of the hyperplane, x is the
input variable(s) and the intended output t=±1.
Two LinearSVC models – (a) one for predict-
ing count of classes a book could belong to
(Class Count Model); (b) other is the Cate-
gory score predictor Model . LinearSVC was
chosen as it uses the liblinear framework, and
scales well with increase in number of features.

The two models are pipelined for effective clas-
sification of categories, input features for both
models remain the same. Two sets of target
variables for the respective models are created
– categories for class score predictor model
and count of categories for class count pre-
dictor model. Motivation behind model: High
correlation between the number of categories
a book belongs to, and its corresponding class
with highest score.

Experiment
For building an end-to-end classifier system, we
build a Classifier Class extending the scikit-
learn Base estimator API, with the respective
fit and predict functions, and two LinearSVC
models are created.
In the fit (training) phase, both models are
trained with their respective target variables.
We utilize a k-fold cross-validation strategy (k =
4) and obtain the corresponding class scores.
The class count model is trained with the ob-
tained class scores for the whole training data
again. The class (category) predictor model is
then finally trained with top k category predic-
tions from the class count model. Retraining the
entire set of models takes just under 2 minutes.

The experimental setup utilized for our solu-
tion is as follows: (1) Intel R© Xeon R© Processor
E5-2650 v4 30M Cache, 2.20 GHz, 12 Cores, 24
Threads (2) 250 GB RAM (3) CentOS 7.

Model Parameters
Table 1: Optimal Parameters for LinearSVC

Parameter Optimal Value
C 1.0

Tolerance for stopping 0.0001
Loss Sqrd. Hinge Loss

Penalty L2
Optimization algorithm Dual

Max Iterations 3000

Table 2: Class Weights for Top-level Categories to
handle Class Imbalance in LinearSVC

Category Class Weight
Kinderbuch & Jugendbuch 1.8

Ratgeber 3
Sachbuch 2

Glaube & Ethik 2
Künste 6

Architektur & Garten 6
Literatur & Unterhaltung 1
Ganzheitliches Bewusstsein 1

Results
Table 3: k-fold Cross-Validation (k=4) – f1-micro
scores on Subtask (a) and Subtask (b)

CV Fold Subtask (a) Subtask (b)
Fold 1 0.833 0.384
Fold 2 0.943 0.471
Fold 3 0.950 0.484
Fold 4 0.900 0.397

Team Raghavan achievesRank 4 in Subtask (a)
during the test phase (f1-score of ∼0.86). How-
ever, in the post-evaluation phase, we achieve an
f1-score of 0.878 (first position) in Subtask (a).
The additional 0.02 gain in f1-score was achieved
by adding ISBN based features – Group ID and
Publisher ID.
Table 4: Evaluation Metrics (f1-micro scores) for
Test Data on Subtask (a) and Subtask (b)

Phase Subtask (a) Subtask (b)
Validation 0.851 0.4098

Test 0.857 -
Post-Eval. 0.878 0.3947


