
Can Calibration Improve Sample Prioritization?

Motivation
• Calibration can reduce overconfident predictions of deep neural networks, 

but can calibration also accelerate training?

• We show that performing calibration during training can –

- Improve the quality of subsets when performing sample prioritization

- Reduce the number of training samples per epoch (by at least 70%)

- Speed up the overall training process

• Pre-trained calibrated ‘target’ models coupled with calibration during 
training can also guide sample prioritization.

The process of selecting the most important samples/informative subsets 
during training at each epoch.

Max Entropy
A de facto uncertainty sampling technique that selects the most informative 
(top-k) samples to maximize the predictive entropy

Sample Prioritization

Calibration (during training)
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A technique that curbs overconfident predictions in deep neural 
networks, wherein the predicted (softmax) probabilities reflect true 
probabilities of correctness (better confidence estimates).

Label Smoothing
The one-hot encoded ground truth labels (yk) are smoothened using a 
parameter α,

where K is the number of classes. These smoothened targets        and 
predicted outputs pk are used to minimize the cross-entropy loss.

Mixup
A data augmentation method which is shown to output well-calibrated 
predictive scores.

where xi and xj are two randomly sampled input data points, and yi and yj
are their respective one-hot encoded labels. 
Here, λ ∼ Beta(α, α) with λ ∈ [0, 1].

Focal Loss
Calibrated probabilities are obtained by minimizing a regularized 
KL-divergence between the predicted and target distributions.

where p is the probability assigned by the model to the ground-truth 
correct class and is a hyperparameter.

Results

Experiments

• Pre-trained models are used to obtain rich sample representations before 
training a downstream task.

• Target model – a pre-trained calibrated model with larger capacity
• Current model – model which is being trained (with/without calibration)

• Sample prioritization with a pre-trained target model at each epoch guides
the corresponding epochs of the current model’s training process.

• Note – Sample prioritization with the calibrated target model is performed in 
addition to calibrating the current model.

• Calibration with sample prioritization => lower test ECEs across the board
• No significant trade-offs between accuracies and ECEs
• Mixup consistently performs well (high accuracies, low ECEs), 

Label Smoothing (least performance)
• Performing calibration during training improves sample prioritization
• Target – significant improvement over current (particularly Label Smoothing)Pre-trained Calibrated ‘Target’ Models

• Datasets – CIFAR-10, CIFAR-100 (train: validation: test – 75: 10: 15)

• Current model => Resnet-34 (Label Smoothing, Mixup, Focal Loss)
• Target model => Resnet-50 with Mixup – CIFAR-10 (α=0.3), 

CIFAR-100 (α=0.25)

• During sample prioritization, start with 10 warm-up epochs with all 
samples selected during training (no subset selection). 
Total training epochs – 200.

• Then, select n% of total training samples in each epoch using the Max 
Entropy criterion. Subset sizes used for each epoch, n – {10, 20, 30}.

• Evaluation Metrics – Expected Calibration Error (ECE) and Accuracy

• SGD Optimizer; Learning rates – 0.01 (CIFAR-10) and 0.1 (CIFAR-100); 
Cosine annealing scheduler, Weight decay – 5e−4; Momentum – 0.9


