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Motivation

- Calibration can reduce overconfident predictions of deep neural networks,

but can calibration also accelerate training?

- We show that performing calibration during training can —

- Improve the quality of subsets when performing sample prioritization

- Reduce the number of training samples per epoch (by at least 70%)

- Speed up the overall training process

- Pre-trained calibrated ‘target’ models coupled with calibration during
training can also guide sample prioritization.

Calibration (during training)

A technique that curbs overconfident predictions in deep neural
networks, wherein the predicted (softmax) probabilities reflect true
probabilities of correctness (better confidence estimates).

Label Smoothing
The one-hot encoded ground truth labels (y,) are smoothened using a
parameter q,

e’ =ye(l — a) + o/K

where Kis the number of classes. These smoothened targets y,fsand
predicted outputs p, are used to minimize the cross-entropy loss.

Mixup
A data augmentation method which is shown to output well-calibrated
predictive scores.

Y= A\y; + (1 — )\)yj
where x; and x; are two randomly sampled input data points, and y; and y;

are their respective one-hot encoded labels.
Here, A ~ Beta(a, a) with A € [0, 1].

Focal Loss
Calibrated probabilities are obtained by minimizing a regularized
KL-divergence between the predicted and target distributions.

LFocal = _(1 — p)legp

where p is the probability assigned by the model to the ground-truth
correct class and 7y is a hyperparameter.

Sample Prioritization

The process of selecting the most important samples/informative subsets
during training at each epoch.

Max Entropy
A de facto uncertainty sampling technique that selects the most informative
(top-k) samples to maximize the predictive entropy

H[y|£l?, Dtraz'n] = Zp(y — C|33, Dtrain) logp(y — C|CB7 Dtraz’n)

Pre-trained Calibrated ‘Target’ Models

* Pre-trained models are used to obtain rich sample representations before
training a downstream task.

« Target model — a pre-trained calibrated model with larger capacity
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Experiments

- Datasets — CIFAR-10, CIFAR-100 (train: validation: test — 75: 10: 15)

« Current model => Resnet-34 (Label Smoothing, Mixup, Focal Loss)
« Target model => Resnet-50 with Mixup — CIFAR-10 (a=0.3),
CIFAR-100 (0=0.25)

« During sample prioritization, start with 70 warm-up epochs with all
samples selected during training (no subset selection).
Total training epochs — 200.

* Then, select n% of total training samples in each epoch using the Max
Entropy criterion. Subset sizes used for each epoch, n — {10, 20, 30}.

« Evaluation Metrics — Expected Calibration Error (ECE) and Accuracy

« SGD Optimizer; Learning rates — 0.01 (CIFAR-10) and 0.1 (CIFAR-100);
Cosine annealing scheduler, Weight decay — 5e4; Momentum — 0.9

Results

Table 1: Test Accuracies (%) and ECEs (%) across various calibration techniques and subset sizes
with Resnet-34 as current model for both datasets.

Dataset Calibration 100% 30% 20% 10%
Accuracy ECE | Accuracy ECE | Accuracy ECE | Accuracy ECE
No Calibration
Cross-Entropy (Baseline) 94.1 4.1 93.6 5.33 93.86 4.01 93.23 5.2
CIFAR-10 .
Label Smoothing
0.03/0.05/0.05/0.03 94 1.84 91.74 3.17 91.48 3.56 91.72 2.71
Mixup
0.1/0.3/0.2/0.15 95.1 2.1 94.39 2.67 93.35 2.59 93.17 1.78
Focal Loss 0460 171 | 9319 12 | 926 125 | 9225 142
1/3/3/3 ' . . . . . : .
No Calibration 7748 542 | 7313 1077 | 7154 1316 | 69.65 1447
Cross-Entropy (Baseline)
CIFAR-100 .
Label Smoothing
0.03/0.03/0.03/0.09 77.05 4.88 72.21 3.45 70.93 5.75 68.63 5.67
Mixup
0.15/0.15/0.15/0.35 78.68 3.59 73.57 1.49 72.02 24 69.1 1.16
Focal Loss
1/3/3/5 78.59 3.57 71.86 1.67 70.61 3.25 65.81 1.82

Table 2: Test Accuracies (%) and ECEs (%) across various calibration techniques and subset sizes
with Resnet-34 as current model for both datasets, and Resnet-50 (Mixup) as target model.

Dataset Calibration 100% 30% 20% 10%
Accuracy ECE | Accuracy ECE | Accuracy ECE | Accuracy ECE
Crosﬁgrﬁj‘(};‘;"ﬁgg";hm) 94.1 41 | 9395 404 | 9343 49 | 9316 411
I 0?331’,81.055%‘?32;5?083 94 1.84 | 9362 293 | 933 332 | 9327 19
01 /Ogiox_‘llg/o.l 5 95.1 2.1 947 288 | 9379 273 | 9322 216
Fwss 9469 171 | 9315 106 | 9265 158 | 9284  1.89
Crosﬁgrﬁf;;‘;rf‘g’sghm) 7748 542 | 7538 936 | 7504 939 | 7107  9.27
CHRE 0?33381.083%‘?8;%'.‘0% 7705 488 | 7606 228 | 7527 267 | 7259  1.63
s ,O.l\gi/’(‘)‘.‘lps 015 78.68 359 | 7562 086 | 7478 143 | 7032  0.86
F‘m’ss 7859 357 | 7489 237 | 7373 143 | 7089 151

 Calibration with sample prioritization => lower test ECEs across the board
* No significant trade-offs between accuracies and ECEs
* Mixup consistently performs well (high accuracies, low ECEsSs),

Label Smoothing (least performance)

« Performing calibration during training improves sample prioritization
« Target — significant improvement over current (particularly Label Smoothing)
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