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Abstract—Anomaly Detection is a widely used technique in
machine learning that identifies context-specific outliers. Most
real-world anomaly detection applications are unsupervised, ow-
ing to the bottleneck of obtaining labeled data for a given context.
In this paper, we solve two important problems pertaining to
unsupervised anomaly detection. First, we identify only the most
informative subsets of data points and obtain ground truths from
the domain expert (oracle); second, we perform efficient model
selection using a Bayesian Inference framework and recommend
the top-k models to be fine-tuned prior to deployment. To this
end, we exploit multiple existing and novel acquisition functions,
and successfully demonstrate the effectiveness of the proposed
framework using a weighted Ranking Score (η) to accurately
rank the top-k models. Our empirical results show a significant
reduction in data points acquired (with at least 60% reduction)
while not compromising on the efficiency of the top-k models
chosen, with both uniform and non-uniform priors over models.

Index Terms—Unsupervised Anomaly Detection, Model Selec-
tion, Bayesian Inference, Subset Selection

I. INTRODUCTION

Anomaly Detection (AD) is the process of identifying
unexpected or unforeseen events in data sets of various kinds.
Anomalies could also be considered unlikely events with
respect to a deterministic threshold, assuming the existence
of a distribution of various events. In the past few years,
machine learning has led to major breakthroughs in various
areas related to automation and digitization tasks, and AD
plays an instrumental role in such tasks.

There have been multiple AD frameworks with a rich
literature of supervised, unsupervised, and semi-supervised al-
gorithms [1], [2]. In general, an anomaly is a domain/context-
specific definition, which evolves over time, depending on
changes in data distributions, geographical constraints, busi-
ness contexts, and many more. This makes defining anomalies
in any domain a cumbersome task and requires extensive
human expertise and domain knowledge to be inculcated in
the current frameworks. Currently, domain experts rely on
their expertise to decide what is or what is not an anomaly.
Moreover, most real-world AD systems across a myriad of
application contexts have to rely on unsupervised anomaly
detection for various reasons like labeling costs from hu-
mans and other sources, data privacy issues, and so on. A
few representative exemplars of such real-world AD contexts
include identifying anomalies in resource utilization in a
telecommunication network, identifying operational network
issues using Quality of Experience (QoE), Quality of Service

(QoS), and other factors, identifying abnormal medical con-
ditions amongst patients, extremities in climate change, and
many more. With such AD systems in place, preventive and
corrective measures could be taken proactively.

In addition to detecting anomalies, choosing the appropriate
algorithms for the given data in an efficient manner is hard,
particularly in an unsupervised setting. Solution developers
predominantly rely on experimentation and/or trial-and-error
on the whole data to decide the best approaches for their use
cases. The problem at hand is thus two-fold – first, efficiently
choosing the right subset of informative data points to be
identified as anomalies; second, recommending the best AD
algorithms from this subset of data.

The main contributions of this paper are,
• We propose a model selection framework for unsuper-

vised anomaly detection using Bayesian Inference, and
propose a novel ranking criterion for selecting the best
models.

• We address the labeled-data scarcity problem in unsuper-
vised AD via subset selection wherein, labels for a small
fraction of most-informative data points are acquired from
an oracle (human), by exploiting multiple existing and
novel acquisition functions.

• We benchmark our proposed model selection framework
using various standard datasets to showcase its effec-
tiveness in unsupervised AD settings with both uniform
and non-uniform priors over models, which operate in
synchronicity with human-augmented user feedback.

We demonstrate our framework as a viable automation
approach to develop unsupervised AD solutions for real-world
applications with minimal supervision.

II. RELATED WORK

Conventionally, most anomaly detection/outlier detection
works have rigorously focused on improving existing anomaly
detection algorithms or proposing new interesting ones [1].
Such works deal with multiple types of anomalies, which
can broadly be classified as point, contextual and collective
anomalies [3].

1) Point anomalies: Data instances are considered anoma-
lous with respect to the rest of the data.

2) Contextual anomalies: Data instances are considered
anomalous in a specific context, like a month or day within
the context of a week or a location.



3) Collective anomalies: Collection of continuous data
instances is considered anomalous with respect to the entire
dataset.

This necessitates an anomaly detection system with appro-
priate approaches to cater to all such anomaly types. Moreover,
most anomaly detection systems in real-time are inherently
unlabeled, thereby making them unsupervised in nature. These
challenges make identifying all such anomalies a tedious
process and require data labeling from experts well-versed in
their respective domains.

However, algorithms selection and/or recommendation in
an unsupervised AD setting has been relatively unexplored.
Model selection in AD systems conventionally requires careful
and rigorous selection over all possible sets of relevant algo-
rithms. Moreover, finding a common metric for evaluation and
effective comparison of these algorithms is hard, due to their
unsupervised nature and requires the context of the problem.
Hence, a robust framework that can be incorporated into the
existing anomaly detection systems (consisting of diverse AD
algorithms) becomes necessary to select/recommend the best
algorithms for the given data.

We note some existing work on model selection for one-
class models [4], [5], however they are limited only to a
specific type of model class. METAOD [6] proposes an
effective way to select the best approaches in unsupervised
anomaly detection, however, it relies on training an offline
meta-learner on various meta-train datasets, with hand-picked
meta-features, which are computationally expensive to create.
Similarly, [7] proposes using a pre-trained model selector
and pre-trained parameter estimator for unsupervised anomaly
detection which is again cumbersome to learn.

The conventional ways of model selection for any machine
learning task, in our case, unsupervised anomaly detection,
involve selecting the best hyperparameters from an exhaustive
initial range of multiple hyperparameter values using Grid
Search or similar mechanisms, with a hold-out validation
set [8], [9]. However, such mechanisms are again search
algorithms, which end up taking massive amounts of time,
and require a thorough knowledge of the hyperparameters to
choose from.

Conventional works on active learning typically involve ma-
chine learning classification algorithms, and a few interesting
applications [10]–[12]. There are also multiple active learn-
ing/subset selection works that leverage the use of an oracle
(user feedback), which are particularly useful in unsupervised
anomaly detection settings, where there are predominantly no
labels in real-time applications. This helps alleviate massive
labeling efforts for domain experts. Interesting works on
finding useful anomalies using active learning, and treating
them as a rare category [13], active learning for AD on
environmental data [14] are noted. Deep active learning for
unsupervised AD is explored in [15], however, none of the
above works are in the context of efficient model selection.

Hence, a unified framework for human-augmented and data-
efficient model selection in any given anomaly detection sys-
tem, particularly unsupervised AD, makes it more convenient

for the end-user to identify the appropriate best-fit algorithms
for the problem at hand.

III. OUR APPROACH

The following are the steps in our proposed unsupervised
anomaly detection model selection system.

Algorithm 1: Our Proposed Framework
Input: Train Dataset Dtrain, Total unsupervised anomaly
detection models M , Total Bayesian Inference iterations I ,
Acquisition Function AF , Subset Dataset Dsubset

Output: Top-k models chosen K, Ranking Score η

Initialize Categorical distribution (likelihood) over M
models
Initialize Dirichlet Priors pi ∼ Dir(αi), i = 1, ..,M with
concentrations αi

Obtain probabilities from all M unsupervised AD models
with Dtrain{x}
Subset selection on Dtrain{x} using AF to obtain
Dsubset{x}
Present Dsubset{x} to oracle to obtain labeled subset
Dsubset{x, y}
Choose corresponding best model for Dsubset{x, y}
for i = 1 to I do

Update model posterior
pi|αi, ci ∼ Dir(αi + ci), i = 1, ..,M based on best
model for Di

subset{x, y}
end for
Select top-k models (K) based on the model posterior
for k = 1 to K do

Calculate F1-score, Accuracy, Average Precision Score,
AUC ROC, η of model k

end for
Return top-k models with best hyperparameters using
Grid Search

A. Bayesian Inference Framework for Model Selection

To perform model selection over unsupervised anomaly
detection approaches, we propose a Bayesian inference frame-
work using Exact Inference (EI), Stochastic Variational In-
ference (SVI), or Markov Chain Monte Carlo (MCMC), for
modeling posterior probabilities [16]. We do not consider
MCMC in this scenario since the time complexity is extremely
high, in comparison to SVI and EI.

Given a Categorical likelihood distribution over all AD
models, if the prior distribution of the Categorical likelihood
distribution is Dirichlet, then the corresponding posterior
distribution is also Dirichlet since the Dirichlet distribution
is a conjugate prior for the Categorical/Multinomial distri-
bution [17]. The samples of the Dirichlet posterior would
give us probabilities of the Categorical distribution over all
AD models. Hence, it is straightforward and sufficient to
use Exact Inference, but we also perform SVI to benchmark



its performance relative to EI. If the domain necessitates
alternative prior distributions, EI may not be feasible and SVI
and MCMC could be explored as options for non-conjugate-
priors.

1) Discussion on Dirichlet Priors: There are multiple ways
to incorporate apriori beliefs in the form of priors for the data
in consideration. We propose defining priors over anomaly
detection approaches based on a taxonomy of,

• Types of anomalies like point, contextual and collective.
• The given type/distribution of data (tree-based, density-

based, etc.).
• By adding domain knowledge on the approaches (along

with other meta-data like priors over features), that the
user believes will perform well on the given data.

In the scenario where priors in the form of taxonomies
are unavailable, we initialize Dirichlet priors over the set of
models in consideration to be uniform, which is typically the
default setting.

The acquisition functions during subset selection (discussed
in Section III-B) – where the user provides feedback on
anomalous behavior for a chosen subset of data, also enhances
the priors over the AD approaches for the next iteration. In-
corporating such priors may improve convergence rate (faster
convergence), thereby also potentially requiring fewer itera-
tions to obtain effective posteriors.

B. Acquisition Functions for Subset Selection

Acquisition functions are used in subset selection to choose
the most informative set of data points to be queried from the
overall data Dtrain. We examine and propose the following
acquisition functions,

a) Boundary: This acquisition function selects points
that are close to the boundary threshold for each model, and
are considered the most uncertain.

abs(pij − threshold)

b) Max Disagreement: Selects data points wherein each
model’s disagreement against consensus probabilities (mean
probabilities across models) is the largest for some learners.

c) Boundary Max Disagreement: Combines Boundary
and Max Disagreement acquisition functions, wherein it first
selects the data points closest to the boundary threshold, and
then selects the points with Max disagreement.

d) Max Entropy: This acquisition function chooses data
points that maximize the predictive entropy.

−
∑
c

p(y = c|x,Dtrain) log p(y = c|x,Dtrain)

e) Variance Entropy: This acquisition function selects
data points where the probability distribution across various
models has the highest variance.

σ2 =

M∑
j=1

(pij − µ)2

M

f) Random: This acquisition function chooses data points
uniformly at random.

We benchmark the aforementioned acquisition functions
with 100% data, which is denoted by All.

C. Ranking Score (η)

The ranking score, defined by η, is a position-weighted
aggregated similarity metric between the top-k model recom-
mendations of a given subset, and the top-k model recommen-
dations of the entire 100% dataset, i.e., with and without subset
selection. The score depends on the presence of a model in
the top-k models, as well as its position.

η = 1/k ∗
k∑

r=1

rsubset/(rsubset + abs(rfull − rsubset))

where rsubset is the rank of a model for the given acquisition
function, while rfull is the rank of a model with the entire
dataset. η indicates the effectiveness of the top-k model rec-
ommendations for different acquisition functions with respect
to the entire 100% data.

IV. EXPERIMENTS AND RESULTS

We train and evaluate our experiments on five different
anomaly detection datasets as observed in Table I. These
datasets, from DAMI1 [18], are often used in the unsupervised
anomaly detection benchmarking literature.

Dataset Instances Attributes Outliers (%)
Waveform 3443 21 2.9
Annthyroid 7129 21 7.49

Pima 768 8 34.9
Wilt 4819 5 5.33

PageBlocks 5393 10 9.46

TABLE I: Characteristics of the Datasets

The subset selection experiments are performed with com-
binations of five different percentages – 5%, 10%, 20%,
30%, 40%, and six acquisition functions – Boundary, Max
Disagreement, Boundary Max Disagreement, Max Entropy,
Variance Entropy, Random, as discussed in Section III-B. The
experiments are executed for each combination of subset size
(%) and acquisition function. In addition, we perform these
experiments with full (100%) data for benchmarking.

To evaluate our proposed model selection framework, we
experiment with nine commonly used unsupervised anomaly
detection algorithms in literature [6], [18], [19], starting with
hyperparameters sampled at random. For consistency, we use
the PyOD package [2] for implementing all models. The initial
unsupervised AD algorithms used are, (1) COF (2) IsoFor-
est (3) CBLOF (4) LOF (5) OCSVM (6) KNN (7) HBOS
(8) ABOD (9) LODA. We choose the top-5 models from this
initial set of nine AD models.

1https://www.dbs.ifi.lmu.de/research/outlier-evaluation/DAMI



Accuracy (%) f1-score Avg Precision AUC ROC Time (in sec)
Dataset EI SVI EI SVI EI SVI EI SVI EI SVI

Waveform 92.395 92.365 0.072 0.062 0.111 0.106 0.577 0.564 0.322 1092.113
Annthyrroid 87.621 87.526 0.1 0.102 0.108 0.103 0.591 0.59 0.294 995.956

Pima 63.513 62.762 0.467 0.462 0.52 0.506 0.652 0.661 0.181 614.822
Wilt 83.375 83.265 0.013 0.011 0.041 0.039 0.467 0.458 0.184 630.476

PageBlocks 81.864 81.766 0.394 0.388 0.591 0.588 0.805 0.798 0.217 746.831

TABLE II: Evaluation Metrics for two Bayesian Inference techniques (Exact Inference (EI) and Stochastic Variational Inference
(SVI)) for all datasets, each averaged across all Acquisition Functions and subset sizes, along with corresponding times taken.

(a) Waveform (b) Annthyroid (c) Pima

(d) Wilt (e) PageBlocks

Fig. 1: Acquisition Functions (with corresponding subset sizes (in %) and 100% data) vs Evaluation Metrics for all datasets.

The Bayesian Inference model selection framework, as
discussed in Section III-A, uses Exact Inference (EI) and
Stochastic Variational Inference (SVI) to select the top-5
AD models across different subset sizes (%) and acquisition
functions. Here, we perform our experiments with both uni-
form and non-uniform Dirichlet priors over all AD models.
We use the Pyro package [20] for our Bayesian Inference
experiments. Further, we perform hyperparameter tuning for
the top-5 models selected with maximum Average Precision
Score [18] as the criterion to choose the best hyperparameters.
Our experiments are performed on an Intel Core i9 @ 2.3 GHz,
with 16 GB memory.

A. Discussion on Results

Table II presents the various evaluation criteria like F1-
score, Accuracy, Average Precision Score, AUC ROC for
two Bayesian inference model selection techniques – Exact
Inference (EI) and Stochastic Variational Inference (SVI),
averaged across different acquisition functions and subset sizes
for all datasets. These metrics are widely used for evaluating
unsupervised anomaly detection models in literature [18].
We can clearly observe that EI and SVI have comparable
performance across different evaluation criteria, however, the
time taken for SVI is exponentially higher (at least 3000x

seconds higher for each dataset) than EI. Hence, we report
only the EI results in the forthcoming experiments.

From Figure 1, we can observe the evaluation criteria across
all acquisition functions and subset sizes for all datasets with
EI, including 100% (All) data. The baseline metrics obtained
in our experiments are similar for all datasets from [18].
We primarily focus on F1-score and Average Precision score,
while accuracy is mostly not emphasized since AD datasets
are highly imbalanced.

Figure 1 shows that the Average Precision of Variance
Entropy decreases across subset sizes for datasets with higher
anomalies (like Pima), and increases or is at least consistent for
datasets with lower anomalies in general. We also observe that
Boundary Max Disagreement effectively converges towards
optimal F1-scores and optimal Average Precision scores, and
has comparable efficiencies to 100% (All) data for each
dataset, as the subset size increases across all datasets. An
interesting observation from Figure 1 is that for an unsuper-
vised setting, random acquisition can perform as well as other
acquisition functions.

We then filter the best corresponding subset size and report
the top-k recommended models across all acquisition func-
tions, along with the entire data (100% with no acquisition)
in Table III. Here, we observe that the Ranking Score (η) (as



Dataset with
Best Subset Size

Acquisition
Criterion

Ranking (top-5) Ranking
Score (η)1 2 3 4 5

Waveform (100% data) No acquisition LOF LODA OCSVM HBOS ABOD –

Waveform
with

40% subset

Boundary LOF LODA OCSVM HBOS ABOD 1.0
Boundary Max Disagreement LOF LODA OCSVM HBOS ABOD 1.0
Max Disagreement Entropy LOF LODA OCSVM HBOS ABOD 1.0

Max Entropy LOF LODA OCSVM HBOS ABOD 1.0
Random LOF LODA OCSVM HBOS ABOD 1.0

Variance Entropy LOF LODA OCSVM HBOS ABOD 1.0
Annthyroid (100% data) No acquisition LOF OCSVM ABOD KNN HBOS –

Annthyroid
with

30% subset

Boundary LOF ABOD OCSVM KNN HBOS 0.883
Boundary Max Disagreement LOF OCSVM ABOD KNN HBOS 1.0
Max Disagreement Entropy LOF OCSVM ABOD HBOS KNN 0.926

Max Entropy LOF ABOD KNN OCSVM HBOS 0.816
Random LOF OCSVM ABOD KNN HBOS 1.0

Variance Entropy LOF OCSVM HBOS KNN ABOD 0.863
Pima (100% data) No acquisition ABOD LOF LODA OCSVM KNN –

Pima
with

40% subset

Boundary ABOD LOF OCSVM LODA CBLOF 0.801
Boundary Max Disagreement ABOD LOF LODA OCSVM CBLOF 0.89
Max Disagreement Entropy LOF ABOD OCSVM LODA KNN 0.743

Max Entropy ABOD LOF LODA OCSVM KNN 1.0
Random LOF ABOD LODA OCSVM CBLOF 0.733

Variance Entropy LOF ABOD OCSVM LODA KNN 0.743
Wilt (100% data) No acquisition KNN OCSVM HBOS ABOD LOF –

Wilt
with

20% subset

Boundary OCSVM KNN LOF ABOD HBOS 0.696
Boundary Max Disagreement KNN OCSVM HBOS ABOD LOF 1.0
Max Disagreement Entropy OCSVM KNN HBOS LOF ABOD 0.76

Max Entropy OCSVM KNN LOF HBOS ABOD 0.678
Random KNN OCSVM HBOS ABOD LOF 1.0

Variance Entropy OCSVM HBOS KNN LOF ABOD 0.678
PageBlocks (100% data) No acquisition OCSVM LOF HBOS KNN ABOD –

PageBlocks
with

10% subset

Boundary LOF ABOD OCSVM HBOS CBLOF 0.551
Boundary Max Disagreement OCSVM LOF HBOS KNN ABOD 1.0
Max Disagreement Entropy LOF ABOD OCSVM IsoForest KNN 0.539

Max Entropy ABOD OCSVM LOF KNN HBOS 0.662
Random OCSVM LOF HBOS KNN ABOD 1.0

Variance Entropy LOF KNN OCSVM IsoForest HBOS 0.535

TABLE III: Acquisition Functions vs top-5 recommended Anomaly Detection models along with their respective Ranking
Scores for all datasets with their best corresponding subset sizes, set against 100% data with no acquisition criteria.

observed in Section III-C) is again mostly high for Boundary
Max Disagreement, which implies consistent performance in
identifying top-k models along with random.

We also showcase the posterior probabilities obtained with
EI when initialized with uniform and non-uniform Dirichlet
priors in Figure 2, with the Boundary Max Disagreement
criterion and the corresponding best subset sizes from Table
III. The non-uniform priors over the initial nine models
are sampled at random, wherein we observe that the prior
probabilities of at least three models take up over 75% of the
total probabilities across all datasets, simulating a scenario as
discussed in Section III-A1. From Figure 2, we can infer that
the posterior probabilities obtained when initialized with non-
uniform (random) model priors could be inherently biased,

and also perform almost similarly to posterior probabilities
when initialized with uniform priors across all datasets. This
indicates the effectiveness of our proposed framework of
coupling subset selection with Bayesian inference. The top-k
corresponding recommended models with uniform and non-
uniform priors are also shown in Table IV, which show that
even with custom non-uniform Dirichlet priors over models,
our framework efficiently recommends the top-k models.

V. CONCLUSION

In this paper, we present three important contributions per-
taining to unsupervised anomaly detection. First, we identify
the most important subsets of data points by systematically
analyzing various existing and novel acquisition functions.



Fig. 2: Posterior Probabilities initialized with uniform and non-uniform Dirichlet Priors with the best performing Boundary
Max Disagreement Acquisition Function and best corresponding subset size for each dataset as reported in Table III.

Dataset with
Best Subset Size Dirichlet Prior Ranking (top-5)

1 2 3 4 5
Waveform with

40% subset
Uniform LOF LODA OCSVM HBOS ABOD

Non-Uniform LOF LODA OCSVM HBOS ABOD
Annthyroid with

30% subset
Uniform LOF OCSVM ABOD KNN HBOS

Non-Uniform LOF OCSVM ABOD KNN HBOS
Pima with
40% subset

Uniform ABOD LOF LODA OCSVM KNN
Non-Uniform ABOD LOF LODA OCSVM KNN

Wilt with
20% subset

Uniform KNN OCSVM HBOS ABOD LOF
Non-Uniform KNN OCSVM HBOS ABOD LOF

PageBlocks with
10% subset

Uniform OCSVM LOF HBOS KNN ABOD
Non-Uniform OCSVM LOF HBOS KNN ABOD

TABLE IV: Top-5 recommended AD algorithms with uni-
form and non-uniform Dirichlet Priors for all datasets using
Boundary Max Disagreement Acquisition Function and best
corresponding subset size for each dataset.

Second, we successfully showcase the effectiveness of our uni-
fied data-efficient Bayesian Inference model selection frame-
work, demonstrated by extensive benchmarking of evaluation
criteria. Finally, we also formulate a Ranking Score (η) to
rank our top-k models selected using Bayesian inference which
operates in settings with both uniform and non-uniform priors
over models, thereby enabling end-users to easily use the
selected/recommended models. This work will enable data-
efficient model selection for unsupervised AD.
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